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Abstract—High-resolution aerial images are becoming more
readily available, which drives the demand for robust, intelligent
and efficient systems to process increasingly large amounts of im-
age data. However, automated image interpretation still remains a
challenging problem. Robust techniques to extract and represent
features to uniquely characterize various aerial scene categories
is key for automated image analysis. In this paper we examined
the role of spatial features to uniquely characterize various
aerial scene categories. We studied low-level features such as
colors, edge orientations, and textures, and examined their local
spatial arrangements. We computed correlograms representing
the spatial correlation of features at various distances, then
measured the distance between correlograms to identify similar
scenes. We evaluated the proposed technique on several aerial
image databases containing challenging aerial scene categories.
We report detailed evaluation of various low-level features by
quantitatively measuring accuracy and parameter sensitivity. To
demonstrate the feature performance, we present a simple query-
based aerial scene retrieval system.

Index Terms—Aerial scene, low-level features, spatial correla-
tion, retrieval, classification

I. INTRODUCTION

Robust techniques that can generate numerical representa-
tions to uniquely characterize various aerial scene categories
while remaining invariant to changes in appearance attributes
and geometrical transformations are in great demand today.
Such techniques play a vital role in various image analysis
systems developed for automated scene recognition, content-
based image indexing, and change detection. In the past,
researchers have explored several interesting approaches based
on pixel and object (homogeneous pixel groups) features
for aerial image classification [1], [2], [3], [4], [5]. Often,
these techniques are limited in the way they exploit the rich
scene attributes offered by the high-resolution aerial scenes.
Another alternative is to segment the scene into components
that correspond to the underlying physical objects (such as
roads, parking lots, or buildings) in the scene, then generate
representations based on the object frequencies and spatial
arrangements. However, accurate image segmentation still
remains a challenging problems making these approaches less
viable and computationally demanding.

In the case of high-resolution aerial scenes, the difficulties
in generating unique representations for scene categories are
further compounded by the high within-class scene variations
and the low between-class variations. For example, in the case
of mobile-home park scenes, the appearance variations of the
mobile homes and the differences in their spatial arrangements

Fig. 1. Top row (a-d) shows a few example images representing mobile-home
parks. The bottom row shows similar looking scenes from other categories:
(e) warehouse, (f) trailer park, (g) and (h) represent residential scenes.

itself can give rise to the wide within-class variations as
shown by the example images provided in the top row of
figure 1. Additionally, other scene categories such as the
warehouse or trailer parks might display visual attributes that
are similar to the mobile-home park scenes. Encoding the local
structural attributes and their spatial patterns in an effective
way is key for generating robust scene representations. In
this paper we propose a representation technique that captures
the local structural and spatial scene attributes in an efficient
manner to characterize various aerial scene categories. Our
approach can be considered as a trade-off between simple
pixel based representation and computationally demanding
segmentation based representations. The proposed method
begins by breaking up the scene into local image patches,
then generating low-level feature based representation for the
image patches. Next, we measure the spatial arrangement
of local image patches by computing correlgorams. Similar-
ity between different aerial scenes are measured based on
comparing correlograms through a unique distance metric.
Previously Huang et. al. [6] explored similar color correlgrams
for measuring image similarity.

The rest of the paper is organized as follows. In Section II
we briefly review recent and relevant work on high-resolution
satellite image classification that exploits spatial features. In
Section III we describe our spatial feature representation
approach in detail. Details of our experiments and results are
presented in sections IV and V. Section VI concludes the
paper with discussions on the findings and ideas for extending



the work.

II. RELATED WORK

We start by reviewing some of the recent works that exploit
pixel-level and spatial context features for high-resolution
satellite image classification. Bruzzone and Carlin [7] pro-
posed a spatial context driven feature extraction strategy for
pixel classification in high-resolution satellite images. First,
image segmentation was performed at different scales. Pixel-
level features are combined with geometrical features com-
puted from the associated segment for image classification.
Similarly, Shackelford and Davis [4] combined both pixel-
based and object-based features to generate object-level clas-
sification of the image. In contrast to the above approaches,
Unsalan and Boyer in [8] showed that intermediate represen-
tation of the scene based on local line parameters provided
an effective way to represent different broad aerial scenes.
The statistical measures derived from line length, contrast, and
orientation distributions provided unique lower-dimensional
representation for different scene categories. Similarly, in [9]
Huang et. al. explored a similar idea based on directional lines
for generating pixel features. The gray-level similarity among
pixels at certain distances and orientations were calculated to
determine possible direction lines. Statistics computed from
the directional line length histogram associated with each pixel
was used as the feature vector. However the above approaches
do not measure the spatial arrangement of features and were
limited in the way they exploit the rich scene attributes
provided by the high-resolution aerial scenes in the image.
In contrast to the above approaches our proposed method
provides a holistic representation for the scene based on spatial
correlograms of low-level features. Next, we describe our
method in detail.

III. PROPOSED TECHNIQUE

A. Overview

Given a image patch representing the scene, we first divide
the image into overlapping square patches of size q × q
with overlap parameter s. Next, we represent each patch in
terms of their low-level feature descriptor. In this paper we
evaluated three different low-level feature descriptors: (i) mean
color vector, (ii) Scale Invariant Feature Transform (SIFT) to
measure local edge patterns, and (iii) oriented filter responses
to measure texture. Each feature descriptor is then quantized
to reduce the feature space. We compute the spatial co-
occurrence statistics of image patches to generate the spatial
correlogram. Spatial correlogram represents the co-occurrence
frequency of similar patches with respect to certain spatial
predicates. Now, the given image is represented in terms of
low-level feature correlgrams. Image similarity is measured
based on a correlogram distance measure. Figure 2 shows the
overview of the proposed method.

B. Features

1) Color: To compute color features for each patch we
measure mean pixel intensity for the three different color

Fig. 2. Methodology overview

channels. In this case each image patch is represented by a
feature descriptor f ∈ R3.

2) Scale Invariant Feature Transform: To measure the edge
orientation statistics we use the SIFT descriptors proposed
in [10]. SIFT descriptors are invariant to small differences
in the image scales, illumination conditions, rotations, and
viewpoint variations. Unlike the original method in [10] which
computes descriptors only at the detected interest points in the
image, here we compute SIFT descriptors for each overlapping
each image patch. Each image patch is represented by feature
descriptor f ∈ R128.

3) Oriented Filter Response: Texture measure for each
image patch is captured through the oriented filter responses.
For oriented filter responses, we use the Leung-Malik [11]
multi-scale and orientation filter banks. Our filter bank consists
of first and second derivatives of Gaussian functions at 6
orientations and 3 scales, 8 Laplacian-of-Gaussian and, 4
Gaussians. Following [11], for each scale we set the Gaussian
width correspondingly to {1,

√
2, 2, 2

√
2}. For each pixel

patch, we compute the average filter energy at every scale
and orientation to generate feature vector f ∈ R48.



C. Feature Quantization

Next, to reduce the number of representative feature de-
scriptors used for measuring the spatial co-occurrence statistics
we quantize the feature space by applying k-means clustering.
We fix the number of clusters m based on experimental
evaluations. The feature descriptor associated with each image
patch is replaced with the associated cluster label.

D. Spatial Correlogram

Next, we measure the co-occurrence frequency of similar
image patches (in this case patches with same cluster labels)
at certain distances d. For every patch p = 1, 2, . . . ,m
we measure the co-occurrence of the patch with itself at
certain pixel distances k = 1, 2, . . . , d at fixed angles of
{0◦, 90◦, 180◦, 270◦}. The resulting spatial correlogram ma-
trix M with d×m elements measures how the autocorrelation
of image patches varies with distance. Each element M(i, j)
represents the normalized frequency of patch j co-occurring
at a distance i. The normalized frequency is computed by
dividing the measured co-occurrence frequency with the total
possible co-occurrences for each patch (e.g. for an each image
patch occurring 5 times in the image, the total possible co-
occurrence is 5× 4 = 20) .

E. Distance Measure

Given two images represented by correlogram matrices M1

and M2, we compute the image similarity based on the L1

distance norm. As suggested in [6] we normalize the L1

norm distance as given by equation 1. The 1 is added in the
denominator of equation 1 to prevent division by zero.∑

i∈d,j∈m

M1(i, j)−M2(i, j)

1 +M1(i, j) +M2(i, j)
(1)

IV. EXPERIMENTS

A. Data

To test the robustness and accuracy of the spatial correl-
ogram based aerial scene representation we applied our ap-
proach on three challenging and diverse aerial image datasets.
The first dataset referred hereafter as MobileHomePark con-
tains aerial images with dimensions 512 × 512 pixels and
0.3 meters spatial resolution. The dataset contains manually
cropped images representing 3 different categories: (i) 1307
examples of mobile-home parks, (ii) 2076 examples of man-
made structures other than the mobile homes, and (iii) 2340
natural scenes depicting forest and barren land areas. Some
of the images in the dataset share portions of the same scene.
Figure 1 shows a few example scenes from this dataset.

The second dataset referred as UCMERCED was compiled
by [12] containing manually extracted aerial orthoimagery
downloaded from the United States Geological Survey (USGS)
National Map. The images have a resolution of one foot
per pixel and are cropped to 256 × 256 pixels. The dataset
contains 21 challenging scene categories with 100 samples per
class. The dataset represents highly overlapping classes such as
the denseresidential, mediumresidential and sparseresidential

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Examples of select image tile categories in the UCMERCED dataset.
The database has 21 categories: agricultural, airplane (a), baseball diamond
(b), beach (c), buildings, chaparral, dense residential, forest, freeway, golf
course (d), harbor (e), intersection, medium residential, mobile home park
(f), overpass (g), parking lot, river, runway, sparse residential, storage tanks,
and tennis courts (h).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Examples of image tiles in the ORNL-I dataset. The database has 5
categories: Agricultural (a), Large-Facility (b-c), Commercial (d-e, Suburban
(f-g), and Wooded (h).

which mainly differs in the density of structures. Figure 3
shows examples from a few selected categories in the database.

Finally we apply our approach on the ORNL-I dataset [13]
containing approximately one meter spatial resolution satel-
lite images representing five different geospatial neighbor-
hood classes namely - agricultural, large-facility, commercial,
suburban, and wooded. These images are collected from
various sources including the United States Department of
Agriculture’s (USDA) National Agricultural Imagery Program
(NAIP), Microsoft’s TerraServer-USA database, and orthoim-
agery provided by the state of California and Utah. The
collection includes 170, 153, 171, 186 and 170 images for the
agricultural, large-facility, commercial, suburban and wooded
classes respectively. The images are distributed throughout
the United States, captured under diverse conditions reflect-
ing different sensor characteristics, shadow conditions, scene
conditions and temporal attributes giving rise to large within-
class variations. A few example images are shown in figure 4.

B. Setup

We evaluated our approach on the above datasets using
individual and combined feature descriptors. We measure the
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Fig. 5. Hit Rate versus cluster size evaluated on MobileHomePark dataset.

performance by measuring the hit-rate which is defined as
the ratio of the number of retrieved images belonging to the
same scene category as the query image to the total number
of images in the scene category. We set parameters d = 10,
q = 16, and s = 8. To set parameter m, we repeated the
experiment with different values of m to determine the optimal
hit-rate measures. We chose m = 64 as the computational
gains with smaller m significantly outperforms the accuracy
advantage obtained for m = 128. We evaluated our approach
using the three feature descriptors. Additionally, we combined
the different feature descriptors into a single vector to evalu-
ated the performance. The distance between the query image
and the rest of the images in the dataset is computed based
on equation (1) and the 20 closest images are examined to
measure the hit-rate. We compute hit-rate for all the images
in the dataset and report the average hit-rate.

V. RESULTS

Figure 6 shows the performance on the MobileHomePark
dataset. As seen from the plot, all the four feature representa-
tions have similar accuracy for top 20 matches with combined
having a slight edge over the rest. For the top 50 matches,
the SIFT and the combined feature representations produce
the best performance with average hit-rate 0.9197 and 0.9203
respectively. Figure 11 shows a few example query results for
the MobileHomePark dataset.

Next, we assess the performance of the UCMERCED
dataset. Figure 7 shows the average hit-rate obtained on this
dataset. Except for the oriented responses, all the feature
representation produced similar performance . We also exam-
ined the average hit-rate across different categories. Figure
8 shows the average hit-rate per individual scene categories.
Our experiments show that scene with recurring patterns such
as the parking lots, harbors produced high hit-rate whereas
scene categories such as the airplane, storage tank, and tennis
courts produced low hit-rate. The main reason could be that
these scene categories require additional shape based feature
representation to effectively characterize the scene. Figure 12
shows example query results from the UCMERCED dataset.

Finally, we examine the performance of the proposed ap-
proach on the ORNL-I dataset. Figure 9 shows the average
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Fig. 6. Categorization accuracy for the top 50 matches in the MobileHome-
Park dataset.
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Fig. 7. Categorization accuracy for the top 20 matches in the UCMERCED
dataset.

hit-rate for the dataset. The performance is similar to the
previous dataset. As shown in figure 10 the performance of
the proposed technique is relatively high for the suburban and
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Fig. 8. Hit-rate for specific categories in the top 20 of the UCMERCED
dataset. The categories in order from left to right: (1) agricultural, (2)
airplane, (3) baseball diamond, (4) beach, (5) buildings, (6) chaparral, (7)
dense residential, (8) forest, (9) freeway, (10) golf course, (11) harbor, (12)
intersection, (13) medium residential, (14) mobile home park, (15) overpass,
(16) parking lot, (17) river, (18) runway, (19) sparse residential, (20) storage
tanks, and (21) tennis courts. Example queries from select categories (harbor,
parking lot, and storage tank) can be seen in Figure 12.
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Fig. 9. Categorization accuracy for the top 20 matches in the ORNL-I dataset.
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Fig. 10. Hit-rate for specific categories in the top 20 of the ORNL-I
dataset.The categories on order from left to right: (1) agricultural, (2) large-
facility, (3) commercial, (4) suburban, and (5) wooded . Example queries
from select categories (large-facility, commercial, and suburban) can be seen
in Figure 13.

downtown scene categories. The high within-class variations
resulting from the differences in sensor characteristics, shadow
conditions, scene conditions and temporal attributes impose
limitations on the performance of the proposed approach.
Figure 13 shows example query results from the UCMERCED
dataset.

VI. CONCLUSION

In this paper, we have presented a scene representation
technique that accounts for the spatial arrangement of low-
level features. We evaluated the method with different feature
descriptors. Our results indicate the spatial correlgoram based
on SIFT features yield promising results. The performance can
be further improved by incorporating additional features to
characterize specific object level shape features. Additionally,
the scalability of the method and the feasibility of the approach
scene classification and change detection needs to be further
explored.
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Fig. 11. Example Queries in the MobileHomePark dataset. Mobile home park category query on the top and bottom row. Other structures category query
on the middle row

Fig. 12. Example Queries in the UCMERCED dataset. Harbor category query on the top row. Parking lot category query on the middle row. Storage tank
category query on the bottom row.

Fig. 13. Example Queries in the ORNL-I dataset. Suburban category query on the top row. Commerical category query on the middle row. Large-facility
category query on the bottom row.


