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Abstract—In this paper, we present Auto-Tuned Models,
or ATM, a distributed, collaborative, scalable system for
automated machine learning. Users of ATM can simply upload
a dataset, choose a subset of modeling methods, and choose
to use ATM’s hybrid Bayesian and multi-armed bandit op-
timization system. The distributed system works in a load-
balanced fashion to quickly deliver results in the form of
ready-to-predict models, confusion matrices, cross-validation
results, and training timings. By automating hyperparameter
tuning and model selection, ATM returns the emphasis of the
machine learning workflow to its most irreducible part: feature
engineering. We demonstrate the usefulness of ATM on 420
datasets from OpenML and train over 3 million classifiers. Our
initial results show ATM can beat human-generated solutions
for 30% of the datasets, and can do so in 1/100th of the time.

I. INTRODUCTION

One of the most common data science problems is that
of deriving a predictive model from a labeled set of raw
training data. From the beginning, a data scientist working
on such a problem is flooded with choices and contingencies.
The data set may comprise images, text, relational data, or a
mix of these types. Pre-processing it often requires a number
of steps, including data cleaning, feature engineering, and
feature selection, before model training can even begin.
These pre-processing steps are often domain-specific, and
the space of possible options for them is vast. Formulating
the correct set of steps, also known as a pipeline, requires
iteration, collaboration and even verification.

In most cases, the last step in the pipeline is building and
learning a model, given a feature matrix and labels. This
last step presents its own choices and challenges, as there
are now an overwhelming number of ways to learn a model.
Over the years, many methods for classification have been
developed, including support vector machines (svm), neural
networks (nn), bayesian networks (bn), deep neural net-
works (dnn), and deep belief networks (dbn). Each method

requires numerous hyperparameters to be set before learning
a model. A model’s performance can also be judged by many
possible metrics, including accuracy, precision, recall, and
F1-score.

It is important to note that this last step is abstracted away
from domain-specific intricacies by relying on a domain-
agnostic input data format, the feature matrix. This makes it
a good target for automation. The past few years have seen
the development of an overwhelming number of automatic
method selection and hyperparameter tuning algorithms and
systems1 [1], [2], [3], each purporting to be better then the
other in its ability to search the space. Data scientists hoping
to take advantage of these advances are once again lost in
an enormous option space: which AutoML method should
one use?

At the same time, several pragmatic data science needs
remain chronically unaddressed. These are: (a) support for
parallel exploration, in which multiple data scientists may
simultaneously search through the model space for the same
dataset but different pipelines (or even different datasets), (b)
an ability to extend the model search space, and algorithms
that allow for simultaneously searching through methods and
their hyperparameters, and (c) abstractions for bringing to-
gether these numerous search approaches, so data scientists
can explore multiple search methods as needed.

In this paper, we present Auto-Tuned Models, or ATM, a
multi-user machine learning service that can be hosted on
any distributed computing infrastructure, whether a cloud
or a cluster. ATM is a multi-method, multi-parameter, self-
optimizing machine learning system for the automation
of classification modeling and hyperparameter tuning. By
enabling the simultaneous execution of multiple methods

1which now define a sub-area within the machine learning community,
called AUTOML
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and providing a suite of best possible models, ATM returns
the emphasis to the part of the machine learning workflow
that has proven most irreducible: feature engineering.

While commercial solutions can attempt to solve some
of the aforementioned problems, we believe this technology
should be open source, extensible, community-driven, and
widely available. This has motivated us to develop abstrac-
tions, systems, and contributory frameworks in addition to
the actual search algorithms. We imagine our system will
have dual effects. First, it will demystify AUTOML by
providing standardized abstractions in a common library
where continually improving approaches are integrated –
similar to the way that scikit-learn has demystified and
democratized machine learning. Second, it will provide a
trusted open-source solution for enterprises to save time and
resources and bring back focus to the impactful, domain-
specific aspects of the data science endeavor: formulating
the precise machine learning task and transforming their data
into information-rich features.
Summary of results: We provided ATM with 420 datasets
downloaded from the OpenML platform and trained models
for several days.

– ATM generated the largest repository of trained
models: We learned a total of 3 million models across
these 420 datasets, and generated a total of 4 terabytes
of files consisting of models and their performance
metrics. We will release this data in a structured way
and provide APIs to access it. To the best of our
knowledge, this will be the largest repository of trained
models available to date.

– ATM is able to beat human-generated solutions for
30% of the datasets: Once the dataset is available on
the OpenML platform, data scientists can download the
data, try different classifiers on their local machines,
and upload their results. At the time of writing this
paper, we were able to extract the first 500 submissions
made to 47 datasets using their APIs. Figure 1 shows the
percentage of datasets ATM was able to beat the best
amongst these first 500 by using simple grid search or
by an intelligent search technique called GP/Bandit.

– ATM is able to perform in 1/100th of the time:
For every dataset for which ATM beats the human-
submitted solution, we calculated the time difference
between the first and the best submission made by
humans to the OpenML platform (best within the first
500). On average, this difference was 243 days 2. A
similar calculation reveals that ATM’s grid search can
generate the solution that beats the best human solution
within a few minutes.

2We note that there was no particular incentive for humans to submit
or enhance solutions. We also acknowledge that we do not know the skill
level of the humans who submitted these solutions.
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Figure 1: The percentage of datasets out of 47 for which
ATM models outperform the first 500 human-in-the-loop
attempts.
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Figure 2: The average time required for ATM to find
a classifier that outperforms the first 500 human-in-the-
loop attempts. The Human-500 bar shows the average time
needed for the best-performing classifier to be found by an
OpenML user in the first 500 attempts.

II. ATM OVERVIEW

We describe our system from the point of view of an end
user. We imagine ATM drawing various categories of users,
as detailed below:
Data scientists using ATM can simply upload a dataset,
select their desired methods, and choose hyperparameter
ranges to search over. 3 They can decide to use either of
ATM’s two optimization/model search/selection methods:
(1) a hybrid Bayesian and multi-armed bandit optimization
system, or (2) a model recommender system that works by
exploiting the modeling techniques’ previous performances
on a variety of datasets. Multiple users can submit multiple
disparate datasets to be run simultaneously. They can also
submit a different version of the same dataset – for example,
one that has undergone a different set of preprocessing and
transformation steps. After submitting the dataset, the user
can begin getting results (models) via streaming. The system
works in a load-balanced fashion to quickly deliver results
in the form of ready-to-predict models, confusion matrices,
cross-validation results, and training timing. We describe this
in detail in Section V.
AutoML experts can contribute newer search methods by
following the abstractions we define for tuning hyperparame-
ters and selecting methods. In our current library, we propose
and use two different methods, and provide abstractions so
that anyone can modify and propose new ones. We describe

3Scaling and dimensionality reduction techniques are available to aid in
the discovery process.
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Figure 3: Overview of the ATM system. A user uploads their
dataset to storage and registers it to the ModelHub database.
The ATM workers query ModelHub for classifiers to run and
report the results back to the ModelHub.

this in detail in Section IV
Machine learning enthusiasts who know more about each
of the individual methods used in our library can enhance
them by (a) proposing appropriate ranges for their hy-
perparameters and (b) proposing newer methods or better
implementations for them.
The contributions of our work include:

– An asynchronous, distributed system that simulta-
neously generates multiple classifiers (for multiple
datasets), records classification results (including per-
formance, models, and meta-information) and logs any
errors as they occur.

– An innovative organization of the complex search space
of classifiers. This allows users to extend this space to
include newer classification approaches in a structured
way.

– A hierarchical algorithm that allows for search at the
method level and tunes hyperparameters.

– Abstractions to enable the contribution and integration
of disparate AUTOML techniques while simultaneously
testing them.

– A database repository of several hundred thousand
classifiers trained on hundreds of datasets.

– An open source software release at: https://github.com/
HDI-Project/ATM

III. RELATED WORK

There are a few popular existing AutoML packages,
such as Auto-WEKA [1], auto-sklearn [2], and TPOT [3].
Each package has its own proprietary model search/tuning
method and set of hyperparameters. In general, these current
AutoML routines present a few problems. First, they are
developed as single-user systems run on local machines,
as opposed to a multi-user systems run in a cloud-based
environment. Second, they do not track the current state of
runs, including previously run experiments, results of those
experiments, parameters for those experiments, etc. Third,
they do not organize the solution space in an intelligent,
search-supporting way. Fourth, they focus tuning solely on

one metric, even though the user may be more concerned
with a different metric.

The preponderance of existing work focuses on the
classifier part of the pipeline, which accepts as its input
a set of features with labels. Thornton, et al. released
the first major AutoML system, Auto-WEKA [1]. They
develop the Combined Algorithm Selection and Hyperpa-
rameter (CASH) objective function, and use two tree-based
Bayesian optimization methods (SMAC and TPE) to solve
the problem. With the goal of creating an AutoML system to
remove the parameter tuning, they build their system around
WEKA [4]. WEKA itself is a suite of machine learning
algorithms intended for a large audience, with the caveat
that parameters must be tuned using a trial and error process,
which may be difficult for people with limited knowledge
of machine learning to grasp. With the addition of Auto-
WEKA, the parameter estimation stage of the ML pipeline
is automated, and machine learning is more accessible to
non-experts.

Feurer, et al. later proposed the auto-sklearn system,
which makes two substantive improvements to Auto-
WEKA [2]. First, they add a meta-learning step to initialize
the parameters, which they find improves the final classi-
fication performance. Second, they do not discard models
once trained and tested on the data, but instead store them
and use them all to build an ensemble classifier at the end.
They replace WEKA with sklearn, which has become the
dominant machine learning software package. They also
follow the CASH model developed in Auto-WEKA, but
only use the SMAC Bayesian optimization method, as it
performed better than TPE [1].

There have been other approaches to and extensions of
AutoML. Salvador, et al. propose one such extension, for
time-varying data [5]. They combine Bayesian optimiza-
tion with four different adaptive strategies, which leads to
improved predictive performance in the majority of test
datasets. Olson, et al. eschew the CASH objective function
and instead evolve the machine learning pipeline using
genetic algorithms [3]. They demonstrate the “evolved”
machine learning pipeline’s potential, and show that for
some datasets, it can even outperform primitive machine
learning. This is especially interesting because there is no
strict, human-derived pipeline in the problem formulation –
instead, the pipeline is learned by the genetic algorithm.

One drawback of AutoML can be the cost of performing
multiple runs of the training stage. Some works circumvent
this issue by using a meta-learning approach to recommend
a classifier using a process called algorithm selection [6].
There is an offline setup stage where each base-AutoML
procedure is run on a set of preselected datasets. A classifier
is then recommended for an unseen query dataset. They
find some correlation between the query dataset and the
preselected set of databases with performances based on
a few randomly selected classifier/parameter pairs on the
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Figure 4: Hyperparameters and hyperpartitions within support vector machines. The leftmost diagram shows the full CPT,
while the subfigures in the center and on the right show hyperpartitions 1 and 2. In hyperpartion 1, degree (φ) is a tunable
parameter that is conditioned on the kernel being polynomial. In hyperpartion 2, γ and intercept are tunable parameters
that are conditioned on the kernel type being sigmoid. Thus, kernel and soft margin are method hyperparameters, while
degree, γ, and intercept are conditional hyperparameters.

query dataset. Abdulrahman, et al. evaluate this type of work
when there is missing meta information [7].

There have also been many studies which target specific
parts of the AutoML pipeline. Dewancker, et al. improve
the AutoML pipeline with more sophisticated acquisition
functions [8]. Kim, et al. propose candidate parameter sets
with a Random Space Partitioning Optimizer [9]. Kim, et
al. improve the scalability of a structure discovery algo-
rithm [10]. Li, et al. discretize the entire hyperparameter
space and then apply a multi-armed bandit scheme to select
the hyperparameters [11].

IV. DEFINING THE SEARCH SPACE

In order to explore the space of possible model pipelines
for a given problem, we must first have a way to pro-
grammatically enumerate the sets of hyperparameters which
describe the models. This is difficult, because hyperparam-
eters are hierarchical, and values selected at higher levels
affect which choices must be made at lower levels. At
the highest level, the choice of which modeling method
to use affects which hyperparameters must be specified for
that model. For example, a support vector machine (SVM)
is described by a different set of hyperparameters than a
decision tree. Furthermore, certain hyperparameters for a
given model affect which other hyperparameters must be
chosen. Consider a data scientist who is training an SVM.
First she must choose which kernel to use. If she chooses
a polynomial kernel, she must then specify the value for
a discrete-ordinal hyperparameter degree. If she chooses a
sigmoid kernel instead, she must specify values for two
additional continuous hyperparameters, γ and intercept.
Therefore, choosing a set of hyperparameters is not as simple
as sampling from a fixed vector space, even for a given type
of model. We define three levels of hyperparameter:
methods: At the highest level, a modeling method must

be selected first. ATM includes support for several
common modeling methods, including support vector
machines, deep belief networks, random forests, and
naive Bayes classifiers. Table I lists the supported
methods.

method hyperparameters: For a given modeling method,
several method hyperparameters must be specified
no matter what. Hyperparameters may be categorical
choices, such as which kernel or which transfer
function to use, discrete-ordinal choices like number
of epochs and number of hidden layers, and
continuous valued choices like that of learning rate
and soft-margin.

conditional hyperparameters: Some hyperparameters
must only be specified if certain choices for method-
level hyperparameters are made. These are conditional
hyperparameters. For example, when a Gaussian
kernel is chosen for svm, a value for σ – the standard
deviation of the kernel – needs to be specified.

We define two concepts to help explain the hyperparameter
search space.

Definition 1: A conditional parameter tree (CPT) ex-
presses the combined hyperparameter space for a given
modeling method as a search tree. The root node of the CPT
identifies the model-building method, and each node below
the root represents a hyperparameter. Certain hyperparameter
nodes also act as branches, with child nodes beneath them.
Branch nodes are always categorical variables; the value
chosen for a branch node determines which conditional
hyperparameters below it must be specified. Nodes which
do not have children are leaves. Method hyperparameters
always descend directly from the root, while conditional
hyperparameters always descend from branch nodes.

A CPT can be traversed to enumerate all possible models
for a given method, essentially defining its search space.
Figure 4 shows a typical CPT for a support vector machine.
There are two method hyperparameters – a continuous
valued soft margin, and a categorical valued kernel. The
kernel is represented as a branch node. The choice of
kernel determines which conditional hyperparameters must
be specified. If kernel is polynomial, degree must be
specified; if sigmoid is chosen, both gamma and intercept
must be specified instead.

Definition 2: A hyperpartition is a subset of a CPT which
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Table I: Table showing the list of methods, their hyperparameters (“m-hyp”), and conditional hyperparameters (“c-hyp”).
The table also shows the number of hyperpartitions per method (“# hyp”). Categorical hyperparameters have the set of
possible values, all other hyperparameters are continuous. Abbreviations used in the table are expanded as follows: SVM ←
support vector machine, RF← random forest, ET ← extreme trees, DT← decision tree, SGD ← stochastic gradient descent,
PA ← passive aggressive, KNN← k-nearest neighbors, LR ← logistic regression, GNB ← gaussian naive bayes, MNB←
multinomial naive bayes, BNB← bernoulli naive bayes, GP← gaussian process, MLP← multi-layer perceptron, DBN←
deep belief network.

Method m-hyp c-hyp # hyp
SVM kernel={linear, rbf, sigmoid, polynomial}, C gamma, coef0, degree 4

RF criterion={gini, entropy}, min-samples-leaf, max-features, min-samples-split, max-depth None 2

ET criterion={gini, entropy}, min-samples-leaf, max-features, min-samples-split, max-depth None 2

DT criterion={gini, entropy}, min-samples-leaf, max-features, min-samples-split, max-depth None 2

SGD loss={hinge, modified-huber, log, squared-hinge}, learning-rate={optimal, constant},
alpha, fit-intercept={False, True}, eta0, n-iter, penalty={l1, l2, elasticnet}, l1-ratio

None 48

PA loss={hinge, squared-hinge}, C, n-iters None 2

KNN weights={uniform, distance}, n-neighbors, algorithm={brute, kd-tree, ball-tree },
metric={euclidean, manhattan, minkowski, chebyshev}

p, leaf-size 24

LR penalty ={l1, l2}, fit-intercept= {True, False}, C, tol 4

GNB None None 1

MNB alpha, fit-prior None 1

BNB binarize, alpha, fit-prior None 1

GP kernel= {constant, rbf, matern, rational-quadratic, exp-sine-squared} nu, length-scale, alpha, periodicity 5

MLP num-hidden-layers= {1, 2, 3}, activation= {relu, logistic, identity, tanh},
solver= {lbfgs, sgd, adam}, alpha

layer-1-hidden-size, beta-1,
layer-2-hidden-size, beta-2,
layer-3-hidden-size, learning-rate=
{constant, invscaling, adaptive},
learning-rate-init

84

DBN num-hidden-layers= {1, 2, 3}, epochs, learn-rates, output-activation-function= {softmax,
sigmoid, linear, tanh}, learn-rate-decays, learn-rate-pretrain

layer-1-hidden-size, layer-2-hidden-size,
layer-3-hidden-size,

12

consists of choices for all branch nodes on a path from the
root to the leaves. A hyperpartition fully defines a set of
tunable conditional hyperparameters.

These abstractions allow us to break the process for model
selection into two steps. First is hyperpartition selection,
in which the CPT is traversed and a value is specified
for every branch node encountered. Next is hyperparameter
tuning. Once a hyperpartition has been chosen, the remaining
unspecified parameters can be selected from a fixed vector
space. The vector space may have continuous elements
as well as discrete elements, and is likely to have some
combination of both. The process of selecting hyperpa-
rameters from the space defined by a hyperpartition can
be optimized with Gaussian Processes and other sampling
methods, as described in section VI. An example of a full
set of hyperparameter choices is as follows:
{

"method": "svm",
"method -hyperparameters": {

"c": 0.87,
"kernel": "polynomial"

},
"conditional -hyperparameters": {" degree ": 3}

}

Figure 4 shows two distinct hyperpartitions for a support

vector machine CPT.

V. ATM: AUTO-TUNED MODELS

We present ATM, a distributed, collaborative, scalable
system for hyperparameter tuning and model generation.
ATM consists of a cluster of workers which train and test
predictive models with different sets of hyperparameters and
sync up with a master database, the ModelHub. ATM can
process multiple prediction problems and multiple datasets
at once. ATM’s worker cluster is persistent: a data scientist
can decide to upload specifications for a variation of an
unfinished problem or a different problem altogether while
ATM is running, and workers will adopt the task on the fly.

A. Components

ATM comprises the following components:
Worker cluster: A worker is a persistent process which
runs on a compute instance (in our tests, an EC2 instance).
Workers execute model training and communicate with the
rest of the system by appending to a central, immutable
log in the ModelHub, as described below. When activated,
a worker queries the ModelHub for a task to work on. It
chooses an incomplete datarun from the database based on
the dataruns’ priority scores, then queries for the results of
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all classifiers that have already been trained on the datarun.
It runs hyperpartition selection to choose a set of partition
hyperparameters, then runs hyperparameter tuning to select
values for the remaining unspecified hyperparameters. Once
it has chosen a full set of hyperparameters, it trains and tests
a classifier to produce a model and various performance
metrics. It saves the model and the metrics to storage (in
our test, Amazon S3) and logs the results to the ModelHub.
We implemented all workers in Python 2.7, and we used
the scikit-learn library for specific classifier method
implementations. Algorithm 1 presents the algorithmic logic
within a worker node.
ModelHub: The ModelHub is a central database that stores
information about data sets, task configurations, hyperparti-
tions, and previously-trained classification models, including
links to the models themselves and information about their
performance metrics. Our implementation of ModelHub uses
a MySQL database in conjunction with Amazon S3 to store
this information. The ModelHub does not perform any actual
computation on the classifiers; its role is to provide a single,
consistent log which all of the workers can query and with
which they can sync their results. The data structures it holds
are described in more detail below.

The ModelHub database contains four tables, each repre-
senting a logical data structure. Together they describe all the
classifiers that have been tested for as long as the ModelHub
has been running. Figure 5 shows the database schema, and
the tables are summarized below.
• datasets: A dataset represents a set of train/test data.

The table contains its name, paths to train and test
data files (if applicable), and the name of the column
containing the label. All datasets must be in tabular
format. Currently, our implementation only accepts data
in csv format.

• dataruns: A datarun is the logical abstraction for
a single run of a machine-learning problem. The ta-
ble stores configuration and settings specified by the
user, including the methods for hyperpartition selec-
tion (e.g. ”UCB1”) and hyperparameter tuning (e.g.
“Gaussian Process”), and their associated parameters.
Each datarun has an associated budget, which tells the
worker how much work to perform. If budget type
== ‘‘time’’, the column budget amount bounds
the amount of wall clock time workers may spend on
the datarun; if budget type == ‘‘classifiers’’,
it bounds the total number of classifiers which may
be computed. The priority column tells the workers
which runs to work on first.

• hyperpartitions: A hyperpartition is a set of hy-
perparameters which define a path through a CPT,
as described in section IV. The table contains the
fixed values for the hyperparameters corresponding
to the branch nodes in the CPT, as well as data
about the unspecified conditional hyperparameters.

Each hyperpartition is linked to a datarun.
• classifiers: A classifier represents a model trained

on a dataset with a single, fully-qualified set of hy-
perparameters. It is also the smallest logical unit of
work that can be assigned to a worker. Once a classifier
is finished, model location and metrics location
point to URLs in the cloud where the model and metrics
objects for the classifer are stored. The status column
can be set to ”started”, ”completed”, or ”errored”; if it
is set to the last, an error message is also stored.

To summarize, when a data scientist wants to solve a
prediction problem with ATM, he or she will upload a set of
data and create a corresponding entry in the datasets table.
They will then create a new datarun which includes con-
figurations for budget, priority, and hyperparameter selection
and links to the dataset. The script for registering a datarun
automatically registers each possible hyperpartition based
on the datarun’s configuration. Once the datarun has been
registered, workers will automatically begin training, testing,
and saving classifiers for the datarun, and will continue
until the datarun’s budget has been exhausted.

Algorithm 1 ATMWorker
1: procedure ATMWORKER
2: while True do
3: D = ModelHub.GetDataruns()
4: for d ∈ D do
5: if IsBudgetExceeded(d) then
6: D = D \ d
7: end if
8: end for
9: if D = {∅} then

10: Sleep() . Wait for dataruns to be added
11: Continue
12: end if
13: d = SelectPriorityDatarun(D)
14: ᾱj

p ←SEARCH(d.dataset id, ModelHub.classifiers)
15: Mp ← LEARNCLASSIFIER(ᾱj

p)
16: yjp ← EVALUATE(Mp d.dataset id)
17: ModelHub.StoreResult(Mp, yjp,ᾱj

p)
18: end while
19: end procedure

B. Outputs

ATM generates three different types of files during its
operation: data, models, and metrics. We used Amazon’s
S3 service for storage. Workers and end users can access
the S3 bucket with credentials established during the initial
setup. Labeled data files must be provided by the user, but
ATM performs one-time preprocessing and cleaning on the
data to convert it into a consistent csv format. For each data
and model pair dataset id, classifier id the following
additional elements are stored:

– Metrics: To enable post-hoc analysis of the models,
we store a set of several metrics generated by each
round of a k-fold cross validation on the available
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datasets

dataset id
name
train path
test path
class column

dataruns

datarun id
dataset id
hyperpartition selection scheme
ts
hyperparameters tuning scheme
r minimum
priority
start time
end time
budget type
budget amount

hyperpartitions

hyperparition id
datarun id
method
partition hyperparameter values
conditional hyperparameters

classifiers

classifier id
datarun id
hyperpartition id
model location
metrics location
cv judgment metric
test judgment metric
hyperparameters values
start time
end time
status
error message

Figure 5: Diagram showing the relational ModelHub database schema.

Table II: Metrics stored on S3 for each of the classifier
trained. PR ← Precision-recall, ROC ← Receiver operating
characteristic, AUC ← Area under the curve

Across folds For each fold
Problem Judgement metric Curves Metric

Binary F1 PR
ROC

Accuracy
F1-score
AUC-PR
AUC-ROC

Multi 3, 4, or 5

µ(F c
1 )− σ(F c

1 ) PR/class
ROC/pair

F1/class
AUC/class
AUC/pair

Big-Multi > 5

µ(F c
1 )− σ(F c

1 ) - Rank-N
F1/class

training data. This allows data scientists to assess
models based on the consistency of their performance
as well as on their overall performance, and by a
variety of different metrics. Data sets vary in number of
classes, class balance, and number of training examples,
which makes it impossible to decide on one universal
“best” metric. While designing ATM, we consulted
several data science experts about what metrics would
be best. There was no agreement about an ideal subset
of metrics, so we decided to include a wide range.
The metrics computed for each classifier are shown in
Table II. The judgement metric is a statistic computed
across all folds and the average of this number is
stored in the ModelHub.classifiers database. For
Binary class problem we use the F1 score achieved
for each fold and calculate its average. For multi class
problems, for each fold, (i) we calculate the F1 scores
for every pairing of classes, (ii) calculate the average
and standard deviation of these F1 scores and (iii) and

finally subtract the standard deviation from the mean.
This judgement metric is calculated for every fold and
an average of this statistic across all folds in stored in
the databse.

– Final trained model: After performing cross-validation
testing on the dataset, the worker trains a final model
using all the training data available. This model is
serialized as a Python pickle (.pkl) file. The file is
saved to the cloud and is uniquely identified using a
hash of the method name, the hyperparameter settings,
and the dataset path.

VI. AUTOMATIC SEARCH

Combining the search spaces of multiple modeling
methodologies and hyperpartitions creates a number of chal-
lenges with regard to finding the best model, either in the
isolation of one methodology or from an hyperpartition. In
particular, one encounters:

Discontinuity and non-differentiability: Categorical
hyperparameters make the search space non-
differentiable, and do not yield to simple search
techniques (e.g. hill climbing) or to methods that rely
on learning about the search space (e.g. Bayesian
optimization approaches).

Varying dimensions of the search space: By definition,
conditional hyperparameters imply that the hyperparti-
tions within a methodology have different dimensions.
Because choosing one categorical variable over another
can imply a different set of hyperparameters, the dimen-
sionality of a hyperpartition also varies.

Non-transferability of methodology performance: Un-
fortunately, when conducting searches among modeling
methodologies, robust heuristics are limited. Training
on the dataset with an svm model gives us no informa-
tion about how well a dbn might perform.
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Table III: Notation table.

Symbol Description

t = 1 . . . T index into classifiers trained so far, ordered by time
i index into dataset
j = 1 . . . J index into hyperpartitions
Yj = yj1 . . . y

j
T judgement metric for classifiers tried so far for

jth hyperpartition
ᾱj a hyperparameter set for a classifier for jth hyper-

partition
ᾱj
1 . . . ᾱ

j
T hyperparameter sets for classifiers tried so far for

jth hyperpartition
zj reward for hyperpartition j
fj a meta model learned so far for hyperpartition j
ᾱj
p proposed hyperparameters for hyperpartition j

Algorithm 2 ATM - Search algorithm
1: procedure SEARCH(Dataset ← Di, ModelHub.classifiers)
2: GET judgement metric yj1 . . . y

j
T ∀j|Di

3: for j ∈ J do
4: EVALUATE-REWARD: zj ← Q(yj1 . . . y

j
T )

5: end for
6: SELECT HYPERPARTITION:

sj = zj +

√
2 lnn

nj
(1)

where j is hyperpartition index, zj is the reward gained from pulling
the j-th arm nj times, and n =

∑J
j=1 nj over all J hyperpartitions.

Select j = argmax
j

sj (2)

7: For selected j
8: GET hyperparameters ᾱj

1...T corresponding to yj1...T
9: if T ≥ rminimum then

10: fj ← FIT((ᾱj
1, yj1) . . . (ᾱj

T , yjT )

11: ᾱj
p ← PROPOSE(fj)

12: else
13: ᾱj

p ← RANDOM(j)
14: end if
15: return ᾱj

p

16: end procedure

With a conditional parameter space framework in place,
we now design automatic meta-learning techniques that
iteratively select among hyperpartitions and tune hyperpa-
rameters. In our system, we use bandit based method to
select amongst hyperpartitions and meta modeling technique
to tune hyperparameters for a given hyperpartition. Algo-
rithm 2 presents the combined bandit-based selection and
metamodel-based tuning algorithm.

A. Hyperpartition selection using bandit learning

We employ bandit learning strategies which model each
hyperpartition as an arm in a multi-armed bandit (MAB)
framework.
Concept of reward: Given that each arm, when pulled, pro-
vides a randomized reward drawn from a hidden underlying
distribution, the goal of a MAB problem is to decide which
arm to pull to maximize long-term reward, re-evaluating
the decision after each pull’s reward is observed. In the

context of ATM, UCB1 treats each hyperpartition as an
arm with its own distribution of rewards. As time goes on,
the bandit learns more about the distribution, and balances
exploration and exploitation by choosing the most promising
hyperpartitions to form classifiers.
Concept of Memory: Memory (moving window) strategies
exist in order to change the bandit formulation when re-
ward distributions are non-stationary. The UCB1 algorithm
assumes that the underlying distribution of rewards at each
arm choice is stationary. In the context of ATM, during
model optimization, as the meta model (GP) continues
to learn about the hyperpartitions and is able to discover
parameterizations that continue to score better and better, it
essentially shifts the bandit’s perceived reward distribution.
The distributions of classifier performance from the set of
all parameterizations within that hyperpartition have not
changed, but the bias with which the GP samples has
changed. This could effectively lead a hyperpartition to be
selected based on stale rewards. Memory strategies have a
parameter ts that determines how many previously trained
classifiers to use to calculate the rewards.

Given the Modelhub data base, a worker first queries and
aggregates the cross-validation scores yj1 . . . y

j
T for all the

classifiers trained for a hyperpartition j thus far, and the
corresponding hyperparameters set for each of the classifiers
given by ᾱj

1 . . . ᾱ
j
T . Treating each possible hyperpartition as

an arm, we next calculate the reward “accumulated” for each
hyperpartition.
Calculation of reward Q: First a subset of classifiers,
corresponding to the number ts, is selected by either picking
the ts most recent trained classifiers, or the best ts classifiers
from the ones trained so far for this hyperpartition. These
selected ts scores are denoted as ysj .

Reward based on average: This is the traditional way
to define rewards. The reward is calculated by simply
averaging these scores, given by:

zTj =
1

|ts|

|ys|∑
i=1

ysji (3)

with | · | being the cardinal of a set.
Reward based on velocity: Velocity strategies seek to rank

hyperpartitions by their rate of improvement. This is
based on the idea that a hyperpartition whose last few
evaluations have made large improvements should be
exploited while it continues to improve. To calculate
velocity we first sort scores in ys in ascending order.
Using velocity, the reward is changed to:

z̄Tj =
1

|ts|

|ys|∑
i=2

∆ysji (4)

for ∆ysji = ysji − ys
j
i−1.
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Velocity strategies are inherently very powerful be-
cause they introduce a natural feedback mechanism
that controls exploration and exploitation. A velocity
optimization strategy will explore each hyperpartition
arm until that arm begins improving less quickly than
others, going back and forth between hyperpartitions
and wasting no time on hyperpartitions which are not
promising.

Selection of a hyperpartition: Given the rewards for each of
the arm, zj ∀j each arm (hyperpartitions) score is calculated
using

sj = z̄j +

√
2 lnn

nj
(5)

where n is the total number of classifiers trained so far across
all hyperpartitions for this dataset and nj is the total number
of classifiers trained for this hyperpartition. Hyperpartition
is selected based on argmaxj sj

B. Hyperparmeter tuning using meta modeling

Within a hyperpartition, we employ a Gaussian Process
(GP) -based meta-modeling technique to identify the best
hyperparameters given the performance of classifiers already
built for that hyperpartition [12]. To accomplish this, we
propose a Fit, Propose abstraction.
Fit: In Fit, a meta model fj is learned between the
hyperparameter sets tried so far, ᾱj

1 . . . ᾱ
j
T , and their cor-

responding scores, yj1 . . . y
j
T .

Propose: In Propose, a new hyperparameter set ᾱp is
proposed. This usually involves creating candidate hyper-
parameter sets, making predictions using the learnt model
fj and choosing among those candidates by applying an
acquisition function to their predictions. ATM supports
two acquisition functions: Expected Improvement, and Ex-
pected Improvement per Time [12].

C. Abstractions in our software

One of the contributions of our work is to break the
automatic machine learning process into two distinct sub-
problems: hyperpartition selection (via multi-armed bandit
methods) and hyperparameter tuning (via Gaussian process-
based methods). While we provide several versions of both
bandit-based selection and GP-based tuning mechanisms,
there are many ways these approaches could be improved
upon for different circumstances.

The problem of hyperpartition selection is essentially
one of picking between multiple discrete choices, each of
which is associated with a set of scores representing its past
performance. Multi-armed bandit algorithms, used for this,
usually involve first computing a set of rewards for each
arm/choice, then using the set of all rewards to determine
which arm to pull next. To tackle this problem, we define a
Selector interface with the following methods:

• compute rewards: Accepts a list of scores pertaining
to a single choice and returns a list of rewards.

• bandit select: Accepts a mapping of choices to lists
of rewards, and returns the choice which it believes will
maximize the expected reward and minimize expected
regret.

• select: Accepts a mapping of choices to histori-
cal performance scores, calls compute rewards and
bandit select in sequence, and returns a single rec-
ommended choice.

Hyperparameter tuning involves taking a set of hyperpa-
rameter vectors, ᾱ1...T , and a set of corresponding scores,
y1...T , and generating a new hyperparameter vector which
is expected to improve on the previously-achieved y-values.
For this problem, we define a Tuner interface with the
following methods:
• fit: Accepts historical hyperparameter performance

data (ᾱ1...T and y1...T ) and trains a model which can
predict the performance of arbitrary hyperparameter
vectors, e.g. a Gaussian process.

• predict: Accepts a set of proposed hyperparameter
vectors and returns predicted performance for each one.

• acquire: Accepts the predicted performances of a set of
proposed hyperparameter vectors and returns the index
of the vector which it believes an ATM worker should
try next.

• create candidates: Generates a list of random hy-
perparameter vectors, to be passed to predict and then
to acquire.

• propose: Calls create candidates, predict, and
acquire in sequence and returns a single proposed set
of hyperparameters.

Our system includes several implementations of both
Selectors and Tuners by default. However, we also expect
that AUTOML experts will want to expand and improve
upon our methods. An expert who wishes to contribute
can do so by creating a subclass of Selector or Tuner and
modifying one or more of the methods above. He or she can
then use our testing functionality to automatically evaluate
its efficacy.

VII. DATASETS

To demonstrate ATM, we use datasets from OpenML [13].
OpenML is a website4 that allows users to upload datasets
for public viewing and track the results of various machine
learning pipelines. OpenML has over 19,000 datasets avail-
able for download. The uploader specifies details about the
dataset such as which attribute must be predicted or which, if
any, attributes should be ignored, the authors, citation infor-
mation, collection date, or license information. Currently, the
datasets must be uploaded in Attribute-Relation File Format5

4www.openml.org
5http://weka.wikispaces.com/ARFF
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(ARFF), a common structure for specifying the values in the
datasets as well as a common way of specifying feature types
(e.g., numeric or categorical), feature names, missing data
values, instance weights, or sparse data.

Additional details about a data science exercise are spec-
ified in OpenML in what are called “tasks.” A task defines
whether the end result is classification or regression, what
metrics must be returned, and what protocol to use (e.g., a
classification task would typically include cross-validation).
A potential solution for a task is called a “flow” which is
a machine learning pipeline. An example could be: Data
→ PCA → SVM → Report Predictive Accuracy. A flow
specifies default values for the hyperparameters of a pipeline.

OpenML tracks “runs,” which are flows applied to a
task – that is, a run is a fully-specified (i.e., with specific
hyperparameter values) machine learning pipeline applied
to a particular task. The hyperparameters may take on the
default value from the flow, or they may be updated by the
user to values he or she thinks are appropriate. This pipeline
is executed on a user’s personal computing hardware to
generate results as specified in the task (e.g., predictive accu-
racy or F-measure). These results are uploaded to OpenML
through the API. The ability to see previous performance for
a dataset is especially helpful, so that other users do not have
to rerun flows to determine what does or does not yield good
performance. A user simply looks at the performance of
previous flows to generate a potential new flow or different
hyperparmeter values that he or she thinks may improve
performance.

A user can traverse the various runs through the API. A
user can search by dataset, flow, or uploader. If we search by
dataset, we can find the best performing run for a particular
dataset. Since OpenML flows are designed by people, we can
find a human baseline performance to compare our AutoML
results against.
Selecting datasets for our experiment: We only select
datasets which (1) are active, (2) have no missing values,
and (3) have 2 to 4 classes. We exclude datasets which
have missing values as incomplete-data classification is not
the goal of this work. After applying our filtering criteria,
we downloaded 420 datasets from the OpenML website.
The datasets fall within a wide range of domains, including
cancer risk detection, diabetes detection, credit risk detec-
tion, car acceptability, chess, tic-tac-toe, and spam detection.
Figure 6 shows additional information about the datasets.

VIII. EXPERIMENTAL SETTINGS

We attempted to run ATM on the datasets using two
selection schemes:
Grid Run: In this configuration, the hyperpartitions are
selected randomly. The hyperparameter range is split into
3 values (start of range, end of range, and middle of range).
One of the three values is then chosen randomly for each
hyperparameter. For each dataset, we set a budget of 1,000
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Figure 6: Graph showing the number of instances (top),
number of features (middle), and number of classes (bottom)
in each dataset. The datasets were sorted by number of
instances.

classifiers. Since there are 420 datasets, we attempt to learn
420,000 classifiers. Each classifier was trained using 10-
fold cross-validation, thus our goal is to learn a total of
4.2 million models.
GP+Bandit Run: We run ATM with Best ts Velocity
for hyperpartition selection and Gaussian Process-Expected
Improvement for hyperparameter tuning. For each dataset,
we set a budget of 100 classifiers. Since there are 420
datasets, we attempt to learn 42,000 classifiers.

IX. RESULTS AND DISCUSSION

Figure 7 shows the F1-score histograms of the best-
performing classifiers for all datasets – both for the Grid run
and the GP+Bandit run. In the GP+Bandit run, we attempted
to learn 41,647 classifiers across all datasets where 39,342
were successfully learned while 2,305 logged errors. For the
Grid run, we attempted to learn 286,577 classifiers across
all datasets where 270,331 were successfully learned while
16,246 logged errors. Overall, we are able to achieve good
classification performance for many datasets.
Comparison to human baselines: Regardless of whether
a Grid or GP+Bandit strategy was used, the process is
automatic, with no human involvement. We next compare
this with a “human-in-the-loop” baseline. These baseline
metrics come from the OpenML site itself. Because datasets
hosted on this site are publicly available, data scientists can
download the data, try different methods, and upload the best
classifier and the performance metrics they achieved. Using
their API, we collected the best possible F1-score submitted
for a dataset by anyone. Figure 8 shows a histogram of the
best ATM performance minus the best human-discovered
performance for 47 datasets (as reported on OpenML).
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Figure 7: Histogram of the best F1-scores for each dataset
using the Grid configuration (left) and GP+Bandit configu-
ration (right).
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Figure 8: Histogram of the difference between the best F1-
score for each dataset and the best “human-in-the-loop” F1-
score from OpenML for 47 datasets. The results for the
Grid configuration are on the left while the results for the
GP+Bandit configuration are on the right.

Positive values occur when ATM finds a better-performing
classifier than the best “human-in-the-loop” classifier up-
loaded to OpenML. Negative values occur when ATM does
not find a better performing classifier than the best “human-
in-the-loop” classifier uploaded to OpenML.
Comparing Grid and GP+Bandit: Our next question
targets whether an intelligent selection strategy that uses
GP+Bandit achieves better result within a given budget of
classifiers. To compare both strategies across all data sets, we
first calculated a best-so-far F1-score. Figure 9 compares the
two selection methods across all datasets using this metric
(the line represents the average across all datasets). Both
selection strategies have a budget of 100 classifiers. We
see that GP+Bandit has a slight advantage over the random
strategy, in that it takes slightly fewer classifiers for it to get
to the same result. Figure 10 shows the same information at
specific iterations.

X. CONCLUSION

In this paper, we presented ATM, a distributed AUTOML
system that can support multiple users, and search through
multiple machine learning methods. The system is decentral-
ized in that its many worker nodes work independently and
asynchronously, only interacting through a shared database.
ATM can learn hundreds of classifiers each for hundreds of
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Figure 9: Comparing Grid and GP+Bandit strategies. The y
axis is the average of the best-so-far F1-score achieved after
x iterations for each problem.
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Figure 10: Comparing Grid and GP+Bandit at specific
iterations. The y axis is the best-so-far F1-score after x
iterations.

datasets at a time. The system can assess performance on
a variety of metrics, store metrics and models for future
reference or analysis, and present the user with a final,
optimized model to use for prediction. Users can configure
ATM to search the vast hyperparameter space using several
different strategies, and even to try multiple strategies at
once in parallel.

Our main contribution was the design, implementation,
and testing of the end-to-end system. In addition, we pre-
sented a novel method for organizing the hierarchical search
space of machine learning methods. We defined the condi-
tional parameter tree and hyperpartition and demonstrated
how these abstractions can be used to better traverse complex
hyperparameter spaces.

We designed several different search strategies and gave
access to our end user through a simple API. To demonstrate
our system, we ran the largest-ever training experiment,
where we trained an aggregate of several million models
across 420 data sets.

XI. FUTURE WORK: MODEL RECOMMENDER SYSTEM

Our current work provides a recommender approach, in
which past ATM results are used to recommend models for a
new dataset. We briefly describe this below, where we will
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attempt to generate models for a dataset using the results
from the remaining 419 datasets.

1) Organize results of the Grid Run into a matrix, M of
size 420 × 159, 838 where 159, 838 is the number of
every possible classifier definition (method and specific
hyperparameter values) and 420 represents the number
of datasets on which classifiers have been trained in
ATM. M will be a very sparse matrix.

2) M will be split into a row vector p and matrix G. The
probe row (p) is of size 1× 159, 838 while the gallery
matrix G is of size 419× 159, 838.

3) Sample the probe row p down so it only has 5 values
and store the new row vector in ps.

4) Record the best-so-far performance µ = max (ps)
where max (·) reports the maximum value among all
the defined values and ignores the undefined values.

5) Create a recommender matrix R =

[
G
ps

]
.

6) Use Soft Imputation to complete the matrix and
estimate values for the undefined values (R′ =
SoftImpute (R)).

7) Find the top 5 values from the last row in R′ (probe
row).

8) Run the classifiers corresponding to the top 5 values in
Step 7.

9) Record the classifier performances in their correspond-
ing column in ps.

10) Update µ = max (ps).
11) Repeat steps 5-10 20 times.
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