
1

A Label Propagation Approach for
Predicting Missing Biographic Labels

in Face-Based Biometric Records
Thomas Swearingen and Arun Ross

Abstract—A biometric system uses the physical or behavioral
attributes of a person, such as face, fingerprint, iris or voice,
to recognize an individual. Many operational biometric systems
store the biographic information of an individual, viz., name,
gender, age and ethnicity, besides the biometric data itself. Thus,
the biometric record pertaining to an individual consists of both
biometric data and biographic data. In this work, we propose the
use of a graph structure to model the relationship between the
biometric records in a database. We show the benefits of such
a graph in deducing biographic labels of incomplete records,
i.e., records that may have missing biographic information.
In particular, we use a label propagation scheme to deduce
missing values for both binary-valued biographic attributes (e.g.,
gender) as well as multi-valued biographic attributes (e.g., age
group). Experimental results using face-based biometric records
consisting of name, age, gender and ethnicity convey the pros
and cons of the proposed method.

I. INTRODUCTION

Biometrics is the process of recognizing individuals based
on their physical or behavioral attributes by using automated
or semi-automated methods [1]. Examples of such attributes
include face, fingerprint, iris, voice, gait and signature. A
typical biometric system acquires the biometric data of an
individual (e.g., a face image) and stores it in a database along
with an identifier (e.g., the name of the individual). The data
corresponding to an individual constitutes the biometric record
of that individual. Thus, the database or gallery of a biomet-
ric system contains multiple biometric records pertaining to
multiple individuals.

In some biometric applications, the biometric record of an
individual may be supplemented with additional biographic
data (such as name, age, gender, ethnicity and occupation)
or social network data (such as friends in FaceBook or
connections in LinkedIn). For example, the UIDAI Aadhaar
program in India,1 the OBIM program in the United States,2

the TWIC program in the United States,3 and the E-VERIFY
program in the United States4 collect the biographic details of
an individual besides their biometric data. In such applications,
the biometric record of an individual in the gallery will contain
both biometric and biographic data.

T. Swearingen and A. Ross are with the Department of Computer Science
and Engineering, Michigan State University, East Lansing, MI, 48824 USA
e-mail: swearin3@msu.edu, rossarun@cse.msu.edu.

1https://uidai.gov.in
2http://www.dhs.gov/obim
3https://www.tsa.gov/for-industry/twic
4http://www.uscis.gov/e-verify

Typically, the gallery records are viewed as independent
entities. For example, in a biometric identification system,
the input probe data (e.g., an unknown face image) is in-
dependently compared against each gallery record in order
to determine the identity of the probe. While in some cases
the gallery data may be automatically clustered into multiple
categories (e.g., see [3]), in general, the relationship between
the gallery records is seldom modeled or exploited in the
biometric recognition process.

In this work, we consider the use of a simple graph to model
the relationship between gallery records. Each node in the
graph would correspond to a biometric record and each edge
weight would denote the similarity between two biometric
record (nodes). Thus, the gallery would be denoted as a graph
where a connection between two nodes indicates the degree
of similarity between two identities. Figure 1 illustrates such
a graph. The use of such a graph to model the relationship
between gallery records has several advantages:

1) The output of the identification process would be a
subgraph consisting of not only “matching” candidates
whose face images look similar to the probe image,
but also other candidate images that are “related” to
the probe. For example, when searching for the identity
of an unknown probe image in the graph, the output
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Fig. 1. An example graph where each node in red represents a person and
each edge represents the similarity between two people. This similarity is a
function of the biometric information, biographic information and, potentially,
social media information (but not in this work). Face images are from the
MORPH database [2].
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a

Name:

     Aaron Rodgers

Gender: 

     Male

Ethnicity:

     White

b

Name:

     Aaron Rodgers

Gender: 

     Female

Ethnicity:

     White

c

Name:

     Aaron Rodgers

Gender: 

     

Ethnicity:

     White

Fig. 2. Examples of various types of errors that can occur in biometric
records of identity management systems: (a) Complete and Correct Record;
(b) Complete but Erroneous Record; (c) Incomplete Record.

may consist of gallery identities that are in social or
professional proximity to the individual (such as a close
friend or a co-worker). This would help in cases where
the identity of the probe is not in the gallery, but related
identities are present in the graph.

2) When a node, pertaining to the biometric record of
an individual, is incomplete (e.g., missing demographic
data), the graph structure can be leveraged to predict
the missing information if necessary. Further, the graph
structure can be utilized to detect nodes that may have
incorrect demographic information.

In this work, we will explore one aspect of this graph
structure. We will demonstrate the possibility of using such
a graph structure to deduce missing biographic data in a
record. Some nodes are likely to have missing or incorrect
biographic labels (e.g., see Figure 2). This is especially true
since many of the identity management systems mentioned
earlier have high collection rates. For example, the UIDAI
Aadhaar project collects 15 million records per month and
US TWIC collects 30,000 records per month. The incoming
data is likely to contain a variety of typographical errors,
selection errors (Figure 2b), or missing values (Figure 2c).
The rapid rate of data collection may preempt the possibility
of manually reviewing each biometric record for accuracy. An
automated method may, therefore, be required to verify data
in a biometric record (i.e., node).

Consider a graph in which we have a set of nodes that
have correct and complete information (complete nodes) and
another set of nodes where a specific attribute (e.g., gender)
has incorrect, missing, or unverified information (incomplete
nodes). In our graph-based system, highly similar nodes (i.e.,
those with high edge weight values between them) are more
likely to have similar biographic profiles. We can leverage this
similarity to induce a labeling on the incomplete nodes by
“pushing” labels from the complete nodes. Figure 3 illustrates
this concept. As shown in the figure, each node in the
graph is a record that includes the face image, name, gender,
and ethnicity of an individual. There is a set of complete
nodes (represented in green) and a set of incomplete nodes
(represented in red). The goal here is to induce labels on the
red nodes using the similarity information between all the

NAME:

ETHNICITY:

GENDER:

Kevin Durant

M

B

Fig. 3. A graph where each node represents a record and each edge weight
represents the similarity between a pair of nodes. Green nodes with a solid
border indicate complete records and red nodes with a dotted border represent
incomplete records. The goal of our work is to induce a set of biographic labels
to the incomplete nodes based on labels in the complete nodes.

TABLE I
RELATED WORKS WHICH PREDICT GENDER FROM FACE IMAGES. EACH
WORK APPROACHES THE PROBLEM FROM A DIFFERENT PERSPECTIVE:
GALLAGHER AND CHEN [5] COMBINE BIOMETRIC AND BIOGRAPHIC

INFORMATION, SHAN [6] USES A TRADITIONAL BIOMETRIC PIPELINE (i.e.,
FACE IMAGE→ FEATURE EXTRACTION→ CLASSIFICATION), AND LEVI

AND HASSNER [7] USE A DEEP LEARNING METHOD.

Work Approach Dataset Data Accuracy (%)Size
Gallagher Biometrics+ Proprietary 148

81.7and Chen [5] Biographics images

Shan [6]
Traditional

LFW
13,233
images 94.81Biometric

Pipeline

Levi and Deep Adience 19,487
86.8± 1.4Hassner [7] Learning images

nodes (both green and red). We utilize a label propagation
method to accomplish this.

This work is an extension of our previous work [4]. In the
current work, we extend our previous approach as follows:
(a) the label propagation method is used to predict multi-
valued biographic attributes rather than just binary-valued
attributes; and (b) we explore the utility of different attributes
in the prediction process by assigning different weights to
individual attributes when computing the similarity between
nodes during label propagation. For comparison, we use ex-
isting automated methods that can predict gender, ethnicity,
and age from a single face image.5

Section II provides a review of related literature. Section III
details the baseline methods for predicting biographic informa-
tion from faces and names. Section IV presents our proposed
method for predicting biographic information using the graph-
based gallery and label propagation. Section V reports the
experiments and results. In Section VI, we analyze the results.
Section VII provides a summary of the paper.

5The goal of this paper is not to develop a better gender or ethnicity or
age-group classifier. Rather, the goal is to demonstrate that label propagation
using a graph-based representation of the gallery is a viable way to impute
information to incomplete nodes. Consequently, such an approach can be
used in the future to “predict” biographic or demographic labels for which
classifiers are not available (e.g., occupation).
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II. RELATED WORK

A. Predicting Biographic Information

The term “soft biometrics” is often used to refer to at-
tributes of an individual that cannot, in isolation, be used for
distinctively recognizing a person but, which, in conjunction
with primary biometric attributes, such as face or fingerprint,
can help improve the identification accuracy of a biometric
system [8], especially in challenging environments [9]–[11].
Examples of such traits include gender, age, ethnicity, etc.
Thus, the biographic data of an individual could be viewed as
soft biometric attributes. Often, such soft biometric informa-
tion can be automatically gleaned from the primary biometric
data (e.g., age and gender from face images). On a smaller
scale, there have been attempts to predict a person’s occupation
or name from a face image [12], [13], but with relatively less
success. Dantcheva et al. [14] provide a comprehensive survey
on the topic of soft biometrics.

Gallagher and Chen [5] propose estimating gender from
face images using a probabilistic model of faces and first
names. Shan proposed a method for gender prediction from
face images using Adaboost to select the best Local Binary
Pattern (LBP) features which were then classified as Male or
Female using a SVM classifier [6]. Levi and Hassner [7] use
a Convolutional Neural Network (CNN) to learn features and
classify the gender of face images. Makinen and Raisamo [21]
provide a survey of gender estimation techniques. Table I
summarizes these efforts.

In the problem of age estimation, there are two categories:
(a) age classification and (b) age regression. In age classifica-
tion, a face image is assigned to one pre-defined age group.
In age regression, the precise age is estimated given a face
image. Gallagher and Chen [5] estimate age from face images
using a probabilistic model of faces and first names. Levi
and Hassner [7] propose a CNN approach. Han et al. [15]
use Biologically-Inspired Features (BIF) and a hierarchical
classifier to estimate precise age from a face image. The
hierarchical classifier consists of a series of SVM classifiers
which split the face images into groups pertaining to particular
age ranges. For each group, a regressor is learned which
outputs a final precise age value. Chen et al. [16] extend
the hierarchical approach to use CNNs to separate the images
into groups as well as perform the final age regression. Fu
et al. [22] provide a comprehensive survey on age estimation
from face images. Table II summarizes some of these works.

The problem of ethnicity prediction is a difficult one.
Given that the most-common problem is to predict a person’s
ethnicity from a face image, the vast majority of automated
ethnicity predictors base their prediction on facial appearance.
Ding et al. [17] extract local texture features and shape features
from 3D and 2D face images to predict ethnicity labels. Kumar
et al. [19] pair color histograms with an SVM classifier to
predict ethnicity labels. Muhammad et al. [18] explore the use
of Weber Local Descriptors (WLD) and Local Binary Patterns
(LBP) for ethnicity prediction. Ambekar et al. [20] develop
an ethnicity predictor based on names using hidden Markov
models and decision trees. Fu et al. [23] provide a survey on

ethnicity estimation from face images. Table III summarizes
these works.

B. Combining Biographic Information and Biometrics

Biographic information, such as gender or ethnicity, may
be used by an automated recognition system to help facilitate
matching [30]. There are two different strategies to integrate
biographic data into a biometric system: (a) the biographic
information can be used to filter the gallery database such that
the input probe is only compared against those gallery records
sharing a similar biographic profile [24], [25] and (b) the
biometrics and biographics are combined at the match score
level in order to improve the recognition accuracy [26]–[28].
The importance of fusing biometric and biographic data has
been acknowledged by commercial enterprises as well [31],
[32].

Klare et al. [24] showed that using biographic-specific
matchers can improve the identity retrieval performance. The
authors tested a face recognition system on a variety of
different cohorts (specific values of a biographic attribute,
e.g., Male or Female for the gender attribute) and found that
face recognition systems performed better on some cohorts
compared to other cohorts. Specifically, the matchers had
difficulty recognizing the Female, Black, and Younger (18 to
30 years old) cohorts. They also showed that the recognition
performance on a specific cohort increased if the matcher was
trained only on images from the same cohort.

Han et al. [25] describe a sketch-to-photo face matching
scheme that uses gender information to filter a gallery of
mugshot images. They found that the matching performance
increased if probe sketch images were matched to only those
mugshot images in the gallery having the same gender as the
probe.

Jain et al. [8] proposed a scheme to combine soft biometric
information (gender, ethnicity, height) with the fingerprints of
an individual using a Bayesian scheme. The proposed method
was observed to improve the recognition performance of the
fingerprint matcher.

Tyagi et al. [27] use a likelihood ratio-based fusion method
to combine the match scores emerging from the biometric
matcher and the biographic matchers. They test their method
on a synthetic dataset consisting of fingerprint images from the
NIST-BSSR1 dataset and names and addresses from a database
of electoral records. They found that this resulted in better
recognition accuracy then when the biometric classifier and
the biographic classifiers were used separately.

Bhatt et al. [28] combine biometric and biographic match
scores for a de-duplication application. A match score is com-
puted between each corresponding attribute in two records.
The attributes considered in their work are fingerprint, name,
father’s name, and address. This comparison between two
records results in a 4-dimensional match vector. A SVM is
then trained to differentiate between training samples labeled
as ‘duplicate’ (−1) and ‘non-duplicate’ (+1). The data is
synthetically generated from four fingerprint datasets (CASIA
fingerprint V5, MCYT, WVU multi-modal, FVC 2006) and
two unnamed biographic datasets. The output of the SVM
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TABLE II
RELATED WORKS WHICH PREDICT AGE FROM FACE IMAGES ONLY.

Work Source Dataset Dataset Size Age Ranges Performance Metric PerformanceAttribute
Gallagher and Chen [5] Face Proprietary 148 images Age Regression Mean Absolute Error 9.33

Levi and Hassner [7] Face Adience 19,487 images†
0-2, 4-6, 8-13, 15-20, Classification Accuracy 50.7%± 5.1%25-32, 38-43, 48-53, 60+

Han et al. [15] Face
FG-NET 1,002 images

Age Regression Mean Absolute Error
3.8± 4.2

MORPH II 78,207 images 3.6± 3.0
PCSO 100,012 images 4.1± 3.3

Chen et al. [16] Face Adience 26,580 images†
0-2, 4-6, 8-13, 15-20, Classification Accuracy 52.88%± 6%25-32, 38-43, 48-53, 60+

FG-NET 1,002 images Age Regression Mean Absolute Error 3.49
Chalearn Challenge 4,699 images Age Regression Gaussian Error 0.297

†While both works use the same dataset, it appears that Levi and Hassner did not use the entire Adience dataset.

TABLE III
RELATED WORKS WHICH PREDICT ETHNICITY.

Work Source Dataset Dataset Size Ethnicity Classes Performance Metric PerformanceAttribute

Ding et al. [17] Face FRGC v2.0 4,007 faces Asian, Non-Asian Classification Accuracy 98.26%
BU-3DFE 2,500 faces White, Asian Classification Accuracy 97.88%

Muhammad et al. [18] Face FERET 2,368 faces Asian, Black, Hispanic, Classification Accuracy 96%Asian-Middle-Eastern, White

Kumar et al. [19] Face PubFig 58,797 faces Asian, Black, Indian, White Classification Accuracy 94.6%

Ambekar et al. [20] Name Wikipedia
127,596
Names

Greater European, Greater African,

F-Score 0.69
(Average)

Asian, Greater East Asian,
Western European, African,

British, East Asian, Eastern European,
French, German, Hispanic,

Indian Sub-Continent, Italian,
Japanese, Jewish, Muslim, Nordic

TABLE IV
WORKS WHICH COMBINE BIOGRAPHIC DATA AND BIOMETRICS.

Work Dataset(s) Biometric Biographic Use of Biographic InfoAttribute(s) Attribute(s)
Klare et al. [24] Pinellas County Sheriff’s Office (PCSO) Face Gender, Race, Age Filter Gallery

Han et al. [25]
AR Face Database

Face, Face Sketch Gender Filter GalleryPinellas County Sheriff’s Office (PCSO)†

Multiple Encounter Dataset II (MEDS-II)†

Jain et al. [26] Proprietary Fingerprint Gender, Ethnicity, Height Fused with Biometric Score

Tyagi et al. [27] NIST–BSSR1 Fingerprint Name, Address Fused with Biometric Score

Bhatt et al. [28]

CASIA fingerprint V5

Fingerprint Fused with Biometric ScoreMCYT Name, Father’s Name,
WVU multi-modal Address

FVC 2006

Sudhish et al. [29] Proprietary Face, Fingerprint Name, Father’s Name Fusion with Biometric Score

†This dataset was used as a background dataset.
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is a score indicating the distance of the match vector from
the margin. This score is then used to make a decision as to
whether two records are duplicates or not.

Sudhish et al. [29] also combine biometric and biographic
matchers for de-duplication. They use an adaptive fusion
scheme with multiple biographic attributes and multiple bio-
metric attributes. The fusion scheme adapts to use different
attributes based on information available, computational cost,
and desired accuracy. They test their method on a synthetic
dataset created from face images from the PCSO dataset,
fingerprint images from NIST Special Database 14, and bi-
ographic information from the US census.

In previous literature, the role of the name attribute in the
context of biometrics has not been adequately addressed. So-
cial context influences the decision of choosing an appropriate
name for an individual based on factors such as gender and
ethnicity [13]. Therefore, the name can reveal information
about an individual’s other biographic data. For instance, Liu
and Ruths [33] used first names as features to predict gender
in Twitter. Ambekar et al. [20] proposed the use of hidden
Markov models and decision trees to classify names into
different cultural/ethnic groups. Moreover, some other works
have explored the connection between names and faces. Chen
et al. [13] demonstrated, on a small scale, that first names of
face images can be predicted at rates greater than chance.

C. Label Propagation

Label propagation, a type of semi-supervised learning
method, uses both labeled and unlabeled data. This differs
from supervised learners that utilize labeled data only or
unsupervised learners that work with unlabeled data. There
are two types of semi-supervised classifiers: (1) transductive
learners and (2) inductive learners. Inductive learners allow
for data to be added after completion of the training stage,
while transductive learners require all data to be available at
the training stage.

The label propagation method proposed by Zhou et al. [34],
falls into the transductive learner category. Their method
first constructs a fully-connected graph of all of the data
points (nodes). The similarity between pairs of nodes is found
using a Gaussian Radial Basis Function. The labels are then
propagated from the labeled nodes to the unlabeled nodes
according to a loss function with a normalized Laplacian
which promotes labeling with local and global consistency
(i.e., both nodes that are close in the feature space (local) and
nodes which lie in the same structure or manifold (global) are
likely to have the same label).

The fundamental assumption of Label Propagation is that
points that are likely to have the same label lie on the same
manifold. The goal is to induce labels on the unlabeled data us-
ing the labeled points and the underlying manifold in the data.
Label Propagation has been used in a variety of application
such as image segmentation [35], image annotation [36], and
recommender systems [37]. One particularly relevant problem
where label propagation has been applied is to improve the
labeling in datasets where there are missing or incorrect
labels [38], [39].

III. TRADITIONAL APPROACH: PREDICTING BIOGRAPHIC
INFORMATION FROM A SINGLE ATTRIBUTE/RECORD

In this work, we consider predicting three biographic at-
tributes: gender, ethnicity, and age-group. Gender is simple
to understand as it is typically assumed to take one of two
values: Male or Female.6 Age is another biographic attribute
that is simple to understand as it is just the number years
since an individual’s birth. In this work, we discretize the age
value into 3 age groups: 29 and under, 30-44, and 45 and over.
Ethnicity is much more complex as it is often a group-defined
construct that can change over time. While there are commonly
defined cohorts (e.g., Asian, Black, etc.), these cohorts fail to
accurately reflect the heterogeneity of each group [40]. This
has led to difficulty in tracking these groups for many social
scientists [41]. In our work, we use three ethnicity labels:
White, Black, and Hispanic. However, the proposed method
can be easily expanded to other labeling schemes.

The thrust of this work is in harnessing a label propagation
method which uses (a) multiple attributes in a record and (b)
the relationship between these attributes, to predict a missing
biographic attribute. For comparison to existing work, we will
also predict the biographic attribute using a single attribute
(e.g., face) in a record. These single attribute predictors
are described in the following subsections. In particular, we
predict gender and ethnicity from the name only; and gender,
ethnicity, and age from the face image only.

A. Deducing Gender and Ethnicity from Names

Before we describe the label propagation method used in
this work, we first establish baseline methods where gender
or ethnicity are deduced from a single record. In this regard,
below we describe algorithms for deducing gender/ethnicity
from names or face images.

1) Names to Gender Database (NGD): C’t, a German
computing magazine, published a database of 47,780 names
and their corresponding gender labels [42]. It includes 20,288
Male names, 19,181 Female names, and 8,311 Unisex names.
The names are from 54 countries which are classified as
Male/Female/Unisex by native speakers of the language. We
refer to this database as the Names-to-Gender Database
(NGD). Here, we treat the unisex label as “unknown.” A
lookup table is used to classify an input name as Male, Female,
or unknown. Figure 4 shows an overview of this method.

2) USCB-1990 Database: The United States Census Bu-
reau (USCB) undertook a project to determine undercount fol-
lowing the 1990 Decennial Census. This project amassed 6.3
million usable census records that included names of people.
In 1995, the USCB published a summary of this information
for genealogical reasons [43]. The summary includes three
files, each of which contains four fields: name, frequency in
percent, cumulative frequency in percent, and rank. The three
files correspond to Male forenames, Female forenames, and all
surnames. Note that forenames and surnames are not linked.

6However, in many contexts gender can take on more than two values (e.g.,
http://www.cnn.com/2014/02/13/tech/social-media/facebook-gender-custom/
index.html).

http://www.cnn.com/2014/02/13/tech/social-media/facebook-gender-custom/index.html
http://www.cnn.com/2014/02/13/tech/social-media/facebook-gender-custom/index.html
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We utilize the Male and Female forenames files to create a
forename-based gender classifier.

The classifier is developed as follows. The likelihood for
a given forename, Pr(N = n | G), can be computed based
on the frequencies provided in these files, as long as the
forename occurs in them. Here, N is the name variable, n
is a specific name, and G is the gender variable (which can
take on values M or F ). If a forename does not occur in
one of the files, then Pr(N = n | G) = 0.0 for that particular
name. The posterior probability of a forename being Male or
Female can then be calculated as follows. First, we note that
Pr(N = n) = Pr(N = n | G =M) + Pr(N = n | G = F ).
In the USCB-1990 dataset, there are 6,188,353 different people
whose gender is given, of which, 3,184,399 are Female and
3,003,954 are Male.7 Thus, the prior probabilities are set to
Pr(G = F ) = 0.515 and Pr(G =M) = 0.485. The posterior
probability is then computed as:

Pr(G | N = n) =
Pr(N = n | G) Pr(G)

Pr(N = n)
. (1)

For a given forename, both Pr(G = F | N = n) and
Pr(G =M | N = n) are calculated, and the forename is
assigned to that category whose posterior probability is the
largest. To avoid division by zero, if Pr(N = n | G =M) +
Pr(N = n | G = F ) = 0, then we set the posteriors of both
the Male and Female class to 0.5. If the posterior probabilities
are equal, then the gender of the forename is classified as
“unknown”. Figure 5 shows an overview of this method.

3) USCB-2000 Database: In order to provide the general
public with genealogical, marketing, and cultural research
tools, the United States Census Bureau (USCB) published a
list of surnames and their corresponding ethnicity distribu-
tions [44]. The report uses the responses from the approxi-
mately 270 million people counted during the 2000 Decennial
Census. The USCB distilled the responses into a set of 151,671
surnames. The ethnicity-wise percentage for each surname was
made available, with the caveat that some percentages were
obscured to assure confidentiality.8 Only surnames with more
than 100 occurrences were reported to assure confidentiality.

The ethnicity categories available in the USCB-2000
Database are Non-Hispanic White, Non-Hispanic Black,
Non-Hispanic Asian/Pacific Islander, Non-Hispanic Amer-
ican Indian/Alaskan Native, Non-Hispanic of 2 or more
Races, and Hispanic Origin. In this work, we summa-
rize this information into four classes (White, Black,
Hispanic, and Unknown). Thus, given a surname we
compute the posterior probabilities for each of the
four classes, i.e., Pr(E = B | N = n), Pr(E = H | N = n),
Pr(E =W | N = n) and Pr(E = U | N = n), where E rep-
resents the ethnicity variable which can take on values
Black (B), Hispanic (H), White (W ), and Unknown (U ).

7There are 4,275 unique Female forenames and 1,219 unique Male fore-
names.

8In the case where percentages are suppressed for some ethnicities corre-
sponding to a particular surname, we sum the percentages that are available,
subtract it from 100%, and divide it evenly among the suppressed percentages
for that particular surname.

Name NGD
Male/

Female/

Unknown

Fig. 4. The Names-to-Gender (NGD) Database is used to map an input name
to a gender label.

Name

Name-Based

Gender

Likelihood

Male/

Female/

Unknown

Maximum

Posterior

Classi er

Pr(F ) Pr(M)

(n)

Pr(N = n|G = F )

Pr(N = n|G = M)

USCB-1990 Name Data

Compute

Posterior

Fig. 5. Overview of the USCB-1990 Gender-from-Name Classifier. A
forename, n, is input into the system and a gender label, {Male, Female,
Unknown}, is output.

Name

USCB-2000 Name Data

Name-Based

Ethnicity

Posteriors

Black/

Hispanic/

White/

Unknown
(n)

Maximum

Posterior

Classi er

Pr(E = B|N = n)

Pr(E = H|N = n)

Pr(E = W |N = n)

Pr(E = U |N = n)

Fig. 6. Overview of the USCB-2000 Ethnicity-from-Name Classifier. A
surname, n, is input into the system and an ethnicity label, {Black, Hispanic,
White, Unknown}, is output.

The unknown class is an agglomeration of the Non-
Hispanic Asian/Pacific Islander, Non-Hispanic American In-
dian/Alaskan Native, Non-Hispanic of 2 or more Races classes
in the database. If a surname is not present in the database,
then the probability of all classes is set to 0.0. The surname
is classified based on the maximum posterior probability rule.
If the posterior probabilities of a surname are equal, then the
surname is classified as unknown. Figure 6 shows an overview
of this method.

B. Biographic Prediction from Face Image

In this work, we used a Commerical-Off-the-Shelf (COTS)
system to predict age, ethnicity, and gender from face images.
The COTS system takes a face image as input and outputs
an ethnicity probability for each of the following categories:
White, Black, Asian, Hispanic, or Other. We label a face image
with the ethnicity corresponding to the largest probability.
Since in this work we only consider three ethnicity classes,
White, Black and Hispanic, the Asian and Other labels are
interpreted as “unknown.” The software also outputs a Male or
Female probability which we use to determine a gender label
based on the larger probability. Lastly, the software outputs an
age value in years. We use this value to assign an age group
label to the face in one the following three age ranges: 29 &
under, 30–44, or 45 & older.
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IV. PROPOSED APPROACH: PREDICTING BIOGRAPHIC
INFORMATION USING MULTIPLE IDENTITY RECORDS

A. Label Propagation

Unlike the single attribute based approaches mentioned
above, we now predict biographic attributes using all of the
available attributes. In addition, the proposed method uses
evidence from multiple records to predict biographic attributes.
We first construct a graph where each node corresponds to
a biometric record and each edge weight value defines the
similarity between nodes (records). In this graph, there are
two types of nodes:

1) Complete Node: A nodal record which has no miss-
ing/incorrect fields.

2) Incomplete Node: A nodal record that has one or more
missing/incorrect biographic fields.

We use a label propagation method to push labels from
the complete nodes to the incomplete nodes [34]. Suppose
that we have n records, v of which are complete and
n − v of which are incomplete. We represent this as R =
{R1, . . . , Rv, Rv+1, . . . , Rn}. We first construct a label matrix
Y ∈ Rn×d where d is the number of biographic cohorts. For
example, when predicting ethnicity which has labels Black,
Hispanic and White, then d = 3. Each row in Y corresponds
to a node in the graph. The first v rows of Y correspond to
the complete nodes and the last n−v nodes correspond to the
incomplete nodes. The first v rows of Y are all zeros except
for a single 1 in the column corresponding to the label of
that node. The last n− v rows of Y are all zeros as there is
no label for the incomplete nodes. For example, suppose we
have four nodes, two complete and two incomplete. The first
complete node has the ethnicity label Black and the second has
the ethnicity label White. The label matrix Y, where column 1
corresponds to “Black”, column 2 corresponds to “Hispanic”,
and column 3 corresponds to “White”, looks like:

Y =


1 0 0
0 0 1
0 0 0
0 0 0

 .
For this formulation, each biographic attribute is comprised

of discrete, finite-valued labels. The set of labels is given by
L = {0, 1, . . . , d− 1}. In general, let the set {y1, y2, . . . , yv},
where yi ∈ L, denote the biographic labels of the complete
nodes.

Algorithm 1 describes the biographic label propagation
method. The record set, R, the label matrix, Y, the attribute
weights, B, and two parameters, σ and α, are taken as input.
We first must calculate the affinity matrix for the graph which
is done by comparing each record. The fdiff(Ri, Rj) function
on Line 6 returns a scalar value indicating the difference
between records Ri and Rj . Further details of record com-
parison are given in Section IV-B. The affinity matrix is
then normalized with the sum of each row which yields the
similarity matrix S. The label matrix Y is then used to let label
information “flow” from complete nodes to incomplete nodes.
This “flow” is facilitated by the node relationships manifested
as values in S.

As the original authors noted, we can compute the final
values directly rather than iteratively pushing label informa-
tion [34]. This is accomplished using the F∗ = (I− αS)−1 Y
function. The (I− αS)−1 part of the function can be viewed
as a diffusion kernel which diffuses the complete node labeling
from the upper (complete) section of Y to the lower (incom-
plete) section of Y. For a particular node (i.e., a specific row
in Y and F∗), label information is collected in each column
of F∗. The larger the value in a particular column, the more
likely an incomplete node belongs to the class corresponding
to that column. Continuing our previous ethnicity example,
F∗ will have three columns. Suppose row i corresponds to
an incomplete node, if F ∗i,0 > F ∗i,1 and F ∗i,0 > F ∗i,2 then
incomplete node i is predicted to have label value 0, replacing
the existing value in a record or populating the missing field.

Algorithm 1 Biographic Label Propagation
1: procedure PROPAGATELABELS(R,Y,B, σ, α)
2: for i, j ∈ [1, n] do
3: if i = j then
4: Wij = 0
5: else
6: Wij = exp

(
− fdiff(Ri,Rj ,B)

2

2σ2

)
. Edge weights are based on record similarity.

7: end if
8: end for
9: Dii = zeros(n)

10: for i ∈ [1, n] do
11: Dii =

∑n
j=1Wij

. Diagonal entries are the sum of the corresponding row in W.
12: end for
13: S = D−

1
2 WD−

1
2

14: F∗ = (I− αS)−1 Y . F∗ is the same size as Y
15: for i ∈ (v, n] do
16: li = argmax0≤j<k F

∗
ij

17: end for
18: return li’s . Labels for incomplete nodes.
19: end procedure

B. Record Comparison Techniques

Name: We use levenshtein distance to compare names. The
distance is normalized to [0, 1] range by dividing the lev-
enshtein distance by the length of the longest string. Thus,
φn(Ri, Rj) returns a value between 0 and 1 indicating the
distance between the name fields in record Ri and record Rj .
Face: We use a commercial-off-the-shelf (COTS) face matcher
to compare face images. The COTS matcher returns a simi-
larity score in the [0, 1] range. This score is transformed to
a distance score by subtracting the similarity score from 1.
Thus, φf(Ri, Rj) returns a value between 0 and 1 indicating
the distance between the face images of record Ri and record
Rj .
Age, Ethnicity, Gender: These attributes have a finite number
of values (e.g., Male or Female for gender). The distance is 0 if
the values in the two records are the same and 1 if the values
are different. Thus, φa(Ri, Rj), φe(Ri, Rj), and φg(Ri, Rj)
return a value between 0 and 1 indicating the distance between
the age, ethnicity, and gender fields, respectively, in record Ri

and record Rj .
Combining the Attributes: The fdiff(Ri, Rj ,B) function
compares two records. Here, B denotes the set of weights.
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A distance score is computed for each available attribute.
All attributes may not be available for each record and will
be ignored if not available. For example, when predicting
the gender, the gender attribute may not be available for
the incomplete records. The fdiff(Ri, Rj ,B) function summa-
rizes these distance scores into a single value by taking a
weighted average. If Ri and Rj are both complete records,
then fdiff(Ri, Rj ,B) is given by

fdiff(Ri, Rj ,B) =
1

|A|
∑
k∈A

βk φk(Ri, Rj), (2)

where A = {n, f, a, e, g} denotes the various attributes (name,
face, age, ethnicity, or gender) in the record, βk denotes the
weight of attribute k, and |A| is the cardinality of the set A (5
in this case). The set of weights B = {βn, βf , βa, βe, βg} is
used, as it is possible that some attributes are more important
than others and, therefore, the attributes should be weighted
differently. Each beta value can take on a value between 0 and
1. If either Ri or Rj are incomplete records, and continuing
with the example of predicting gender, then fdiff(Ri, Rj ,B) is
given by:

fdiff(Ri, Rj ,B) =
1

|A \ g|
∑

k∈A\g

βk φk(Ri, Rj). (3)

The gender attribute (represented by g) is removed from the
set of attributes A under consideration for any comparison that
includes at least one incomplete record. Similarly, the ethnicity
(e) or age (a) attribute would be ignored if either Ri or Rj

are incomplete records, and we were predicting the ethnicity
or age attribute.

V. EXPERIMENTS

A. Dataset

A typical face dataset includes face image(s) of multiple
subjects and occasionally includes biographic information
such as gender, ethnicity, or age. Rarely do such datasets
include names of subjects. Some datasets that are comprised of
celebrities contain names (such as LFW [45]). However, none
of the datasets include all of these attributes, viz., faces image,
name, gender, ethnicity, and age. Therefore we assembled our
own dataset based on images from the Web called the Knox
County Arrest Dataset (KCAD). Unlike the work by Tyagi et
al. [27], Bhatt et al. [28], Sudhish et al. [29] that use synthetic
datasets, our work utilizes real naturally occurring datasets.
This dataset is an expanded version from our earlier work [4].

The Knox County Sheriff’s Office (KCSO) posts the infor-
mation of arrestees every 24 hours. This information contains
the arrestee’s: name, gender, ethnicity, age, and face mugshot.
We compiled this information for use in our experiments. The
number of records is given in Table V as well as a breakdown
by biographic attribute. In order to avoid the class imbalance
problem, when predicting an attribute, we will only use the
number of records from each class equal to the number of
records from the smallest class. For example, when predicting
gender, we use 2,322 Female records and 2,322 Male records
even though there are 5,712 Male records available.

TABLE V
BIOGRAPHIC DETAILS OF THE KNOX COUNTY ARREST DATASET

(KCAD).

Attribute Cohort Number of Records

Gender Male 4984
Female 2019

Ethnicity

Black 1522
Hispanic 154

White 5299
Other 28

Age
29 & Younger 2476

30-44 3166
45 & Older 1361

Total 7003

TABLE VI
RESULTS OF BIOGRAPHIC PREDICTION VIA LABEL PROPAGATION USING

ALL ATTRIBUTES, EQUALLY WEIGHTED.

Attribute σ α Cohort Mean Acc. ± STD

Age Group 0.11 0.03

≤ 29 76.5%± 0.916%
30-44 50.5%± 1.05%
≥ 45 76.0%± 1.94%

Overall 67.7%± 0.744%

Ethnicity 0.14 0.02

Black 88.2%± 6.04%
Hispanic 74.4%± 3.14%

White 59.4%± 4.35%

Overall 73.9%± 2.47%

Gender 0.1 0.01
Male 95.6%± 0.577%

Female 91.8%± 1.34%

Overall 93.7%± 0.925%

B. Biographic Prediction

1) Label Propagation Using All Attributes, Equally
Weighted: Section IV-A details the Label Propagation method
used to predict gender, ethnicity, and age group. For each
attribute prediction, we use 4-fold cross-validation. In this
experiment, we use equal weights for all attributes such that
the weights sum to 1 (i.e., βk = 0.2 ∀ k ∈ {n, f, a, e, g}). We
also perform a parameter search to find the best value of σ
and α. This is a two-stage process: first, we vary both σ and
α from 0.1 to 0.9 in increments of 0.1. Once we find the best
values for σ and α, we do another parameter search, in 0.01
increments starting at the best value from the first stage minus
0.09 going to the best value from the first stage plus 0.09 (e.g.,
if the best value from the first parameter search is 0.6, then
the second parameter search would vary from 0.51 to 0.69 in
increments of 0.01).

The results of age group prediction are given in Table VI.
There are 1,361 records with age 29 & under, 1,361 records
with age 30-44, and 1,361 records with age 45 & older in
four folds. The fields used are: name, face image, age group,
gender, and ethnicity. All fields are used when comparing
complete records, and the name, face, ethnicity and gender
fields are used when comparing two incomplete records or a
complete record and an incomplete record.

The results of ethnicity prediction are given in Table VI.
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TABLE VII
RESULTS OF BIOGRAPHIC PREDICTION VIA LABEL PROPAGATION ON A
SUBSET OF ATTRIBUTES, EQUALLY WEIGHTED. IN THE “FACE ONLY”

RUN, ONLY THE FACE ATTRIBUTE IS USED TO COMPARE RECORDS (i.e.,
βf = 1.0 AND βk = 0.0 ∀ k ∈ {n, a, e, g}). IN THE “BIOGRAPHIC ONLY”

RUN, ONLY THE BIOGRAPHIC ATTRIBUTES ARE USED TO COMPARE
RECORDS (i.e., βf = 0.0 AND βk = 0.25∀ k ∈ {n, a, e, g}).

Attributes
σ α Cohort Mean Acc. ± STDUsed

A
G

E
G

R
O

U
P 0.2 0.04

≤ 29 87.6%± 1.87%
Face 30-44 43.9%± 0.565%
Only ≥ 45 89.6%± 2.00%

Overall 73.7%± 0.990%

0.07 0.09

≤ 29 34.2%± 1.14%
Biographic 30-44 32.0%± 1.88%

Only ≥ 45 58.7%± 1.31%

Overall 41.6%± 0.895%

E
T

H
N

IC
IT

Y 0.27 0.33

Black 96.1%± 3.95%
Face Hispanic 75.6%± 5.88%
Only White 89.7%± 2.65%

Overall 87.1%± 2.66%

0.1 0.05

Black 53.6%± 1.08%
Biographic Hispanic 74.4%± 1.81%

Only White 41.3%± 3.77%

Overall 56.5%± 1.43%

G
E

N
D

E
R

Face
Only

0.2 0.01
Male 96.5%± 0.495%

Female 98.3%± 1.15%

Overall 97.4%± 0.752%

Biographic
Only 0.3 0.35

Male 42.5%± 1.22%
Female 80.2%± 3.19%

Overall 61.4%± 1.55%

TABLE VIII
ATTRIBUTE WEIGHTS LEARNED THROUGH A TWO-STAGE PARAMETER

SEARCH.

Attribute βn βf βa βe βg σ α

Age Group 0.0 0.4 0.6 0.0 0.0 0.09 0.16
Ethnicity 0.7 0.3 0.0 0.0 0.0 0.41 0.3
Gender 0.5 0.1 0.0 0.0 0.4 0.17 0.07

There are 154 White records, 154 Black records, and 154
Hispanic records in four folds. The fields used are: name,
face image, age group, gender, and ethnicity. All fields are
used when comparing complete records, and the name, face,
age group and gender fields are used when comparing two
incomplete records or a complete record and an incomplete
record.

The results of gender prediction are given in Table VI. There
are 2,019 Male records and 2,019 Female record in four folds.
The fields used are: name, face image, age group, gender,
and ethnicity. All fields are used when comparing complete
records, and the name, face, ethnicity and age group fields are
used when comparing two incomplete records or a complete
record and an incomplete record.

2) Label Propagation Using A Subset of Attributes, Equally
Weighted: In order to measure the importance of the biomet-
ric attribute compared to the biographic attributes, the label

propagation method is first executed on a graph whose edge
weights are based only on the face score and then executed on
another graph whose edge weights are computed without the
face score (i.e., biographic attributes only). That is, for one run
βf = 1.0 and βk = 0.0∀ k ∈ {n, a, e, g} and for the other run
βf = 0.0 and βk = 0.25∀ k ∈ {n, a, e, g}. The results of age
group, ethnicity, and gender prediction are given in Table VII.
The values for σ and α are determined using the same search
scheme described in Section V-B1.

3) Label Propagation Using Learned Weights: It is possible
that some attributes are more important than others. To find
the best value for the weights, we vary the set of weights
(B = {βn, βf , βa, βe, βg}) as well as σ and α. We use a two-
stage parameter search to find the best set of weights for the
data for each prediction problem (age group, ethnicity, gender).
We first vary the weights from 0.0 to 1.0 in 0.1 step increments
with the constraint that the sum of the weights must be 1. In
addition, we vary the σ and α parameters in increments of
0.1. Second, we use the best values from the first stage and
then vary only the σ and α parameters in 0.01 step increments
starting at the best value from the first stage minus 0.09 going
to the best value from the first stage plus 0.09 (e.g., if the best
value from the first parameter search is 0.6, then the second
parameter search would vary from 0.51 to 0.69 in increments
of 0.01). Each attribute produced a different set of values for
B, as is shown in Table VIII.

The results of age group prediction are given in Table IX
with βn = 0, βf = 0.4, βa = 0.6, βe = 0, and βg = 0. The run
time was 14 minutes, 25 seconds (0.64 seconds/record). The
fields used are: name, face, age group, gender, and ethnicity.
All fields are used when comparing complete records, and
the name, face, ethnicity and gender fields are used when
comparing two incomplete records, or a complete record and
an incomplete record.

The results of ethnicity prediction are given in Table IX
with βn = 0.7, βf = 0.3, βa = 0, βe = 0, and βg = 0. The
run time was 17 seconds (0.11 seconds/record). The fields used
are: name, face, age group, gender, and ethnicity. All fields are
used when comparing complete records, and the name, face,
age group and gender fields are used when comparing two
incomplete records or a complete record and an incomplete
record.

The results of gender prediction are given in Table IX with
βn = 0.5, βf = 0.1, βa = 0, βe = 0, and βg = 0.4. The
run time was 13 minutes, 20 seconds (0.40 seconds/record).
The fields used are: name, face, age group, age, gender,
and ethnicity. All fields are used when comparing complete
records, and the name, age group, ethnicity and face fields are
used when comparing two incomplete records or a complete
record and an incomplete record.

4) Baseline Biographic Prediction: Section III details the
methods that can predict a biographic attribute based on a
single attribute of a person (e.g., name or face). Ethnicity can
be predicted based on surname using the USCB-2000 method
or based on face using the COTS system. Age can be predicted
based on the face using the COTS system. Gender can be
predicted based on forename using the USCB-1990 method or
NGD method, or based on the face using the COTS system.
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TABLE IX
RESULTS OF BIOGRAPHIC PREDICTION VIA LABEL PROPAGATION USING LEARNED WEIGHTS.

βn βf βa βe βg σ α Cohort Mean Acc. ± STD

A
G

E
G

R
O

U
P

0.0 0.4 0.6 0.0 0.0 0.09 0.16

≤ 29 85.3%± 1.21%
30-44 52.9%± 0.789%
≥ 45 87.0%± 1.65%

Overall 75.1%± 0.888%

E
T

H
N

IC
IT

Y
0.7 0.3 0.0 0.0 0.0 0.41 0.3

Black 98.0%± 2.18%
Hispanic 87.2%± 4.80%

White 89.7%± 1.82%

Overall 91.6%± 1.87%

G
E

N
D

E
R

0.5 0.1 0.0 0.0 0.4 0.17 0.07
Male 98.2%± 0.567%

Female 98.2%± 0.485%

Overall 98.2%± 0.456%

TABLE X
RESULT OF BIOGRAPHIC PREDICTION USING BASELINE METHODS.

Source Method Cohort Mean Acc. ± STDAttribute

A
G

E
G

R
P.

Face COTS

≤ 29 72.2%± 1.28%
30-44 79.0%± 1.52%
≥ 45 66.0± 1.94%

Overall 72.4%± 0.879%

E
T

H
N

IC
IT

Y Surname USCB-2000

Black 11.1%± 2.11%
Hispanic 70.5%± 5.29%

White 91.6%± 3.30%

Overall 58.0%± 2.06%

Face COTS

Black 89.5%± 6.19%
Hispanic 75.6%± 2.87%

White 99.4%± 1.11%

Overall 88.1%± 2.31%

G
E

N
D

E
R

Forename NGD
Male 80.1%± 0.995%

Female 69.8%± 1.39%

Overall 75.0%± 0.907%

Forename USCB-1990
Male 87.8%± 1.01%

Female 86.6%± 1.18%

Overall 87.2%± 0.275%

Face COTS
Male 99.8%± 0.0857%

Female 91.7%± 0.918%

Overall 95.7%± 0.477%

The results are given in Table X.

5) Comparison of COTS and Label Propagation Methods:
We compare the results of the COTS performance with the
best label propagation method (label propagation with learned
weights) to determine if the methods achieve similar perfor-
mance. We have 4 accuracies for each method where each
accuracy comes from one of the four folds. We represent the
accuracies from the label propagation method as the vector al
where the first entry is the accuracy of the label propagation
method on first fold, the second entry is the accuracy of the
label propagation method on second fold, etc. Similarly, we
represent the accuracies from COTS as the vector ac. As
the accuracies are paired, we use the Wilcoxon signed-rank

TABLE XI
RESULTS OF HYPOTHESIS TEST BETWEEN LABEL PROPAGATION

ACCURACIES AND COTS ACCURACIES.

Attribute al − ac p-value Result

Age Group [3.53, 4.80, 0.39, 2.06] 0.125 Fail to Reject H0

Ethnicity [7.76, 0.86, 1.72, 3.45] 0.125 Fail to Reject H0

Gender [3.07, 1.98, 2.17, 2.67] 0.125 Fail to Reject H0

test [46] to compare the accuracies. For this test,

H0 : al − ac comes from a distribution with 0 median
H1 : al − ac comes from a distribution with median

different than 0

The results are shown in Table XI.

VI. ANALYSIS

In Section V-B1, we saw that age and gender predic-
tion using the all attribute, equal weight label propagation
method had comparable performance to the baseline classifiers
(in Section V-B4). However, the overall ethnicity prediction
accuracy was ∼15% lower compared to the baseline. This
is because the label propagation method was far worse at
predicting White records compared to the baseline. The label
propagation method had similar performance to the baseline
when predicting Black and Hispanic records.

In Section V-B2, we observed that for all three prediction
problems (age, ethnicity, gender), label propagation using only
the face match scores (i.e., βf = 1.0 and βk = 0.0 ∀ k ∈
{n, a, e, g}) is better than using strictly the biographic at-
tributes only – name, gender, ethnicity, and age match scores
(i.e., βf = 0.0 and βk = 0.25∀ k ∈ {n, a, e, g}). Ethnicity
prediction had a substantial increase in accuracy when using
only the face match scores, compared to ethnicity prediction in
Section V-B1 (+13.2%). This indicates that face match scores
play a critical role in the propagation of biographic labels –
which is intuitive as the face is the most discriminative of all
the attributes. The biographic only accuracy was low for all
three attributes, but it was still above random chance (33.3%
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for age group and ethnicity, 50% for gender) in each case. This
indicates that propagation with only the biographic attributes
is not appropriate, but it is possible when combined with other
attributes it could add additional predictive value.

In Section V-B3, we saw that label propagation using
the learned weights had the best performance for all three
attributes (Age Group, Ethnicity, and Gender). We also saw
in Section V-B5 that the difference between the accuracies of
the label propagation method with the learned weights and the
COTS method were statistically insignificant for all attributes.
However, the goal of this work is not to achieve state-
of-the-art biographic prediction performance, but to show
the benefits of utilizing a graph-structure to model gallery
records.

The set of weights (B) had different values when predicting
different attributes. For age group, βf = 0.4 and βa = 0.6,
while the other weights are 0.0. This is very intuitive as age
group information is obviously useful when predicting the
age group and the face attribute is the most discriminative
attribute. For ethnicity and gender, understanding the weight
values is less intuitive. For ethnicity, all β’s are 0.0 except
for βf = 0.3 and βn = 0.7 (Table VIII). Like age group, the
face attribute is useful for prediction. However, based on the
results of the weights of age group prediction, we would expect
that the ethnicity weight (βe) would be important for ethnicity
prediction, but that is not true. Instead, the name attribute is
important. This could be because there are many subjects in the
dataset with the same surname who all have the same ethnicity
(e.g., in the 2000 U.S. Census, 98.1% of people with the
surname “Yoder” reported being White [44]). The weights for
gender prediction are similar to both age group prediction and
ethnicity prediction as the weights for the face attribute, name
attribute, and gender attribute are non-zero (see Table VIII).
The face attribute and gender weight value are intuitive to
understand as gender information is obviously useful and the
face attribute is the most discriminative attribute. The NGD
and USCB-1990 classifiers predict gender from forename
with 75.0% and 87.2% prediction accuracy, respectively. This
indicates that forename is a strong indicator of gender. If two
subjects have the same forename, the output of φn(Ri, Rj)
will be lower for these two records. Since forename is an
indicator of gender, having the same forename (and thus a
lower φn(Ri, Rj)) is indicative of having the same gender.
Although there are obviously some forenames which are
gender-ambiguous (e.g., Oakley9), gender-ambiguous names
are likely less common than gender specific names.

Age group prediction via label propagation had good pre-
diction accuracy for the ≤ 29 and ≥ 45 cohorts, but much
lower performance for the 30 − 44 cohort (for all label
propagation weight schemes). This indicates that method can
separate the records in a general sense (i.e., younger/older),
but is not good at delineating the three age groups. This
makes sense as the age groups were created so that there is
roughly the same number of records in each group. But this
does not mean that the boundaries are naturally discriminable
boundaries. The COTS predictor is less susceptible to this

9http://www.babynames1000.com/gender-neutral/

fact as it is first predicts the age (in years), and we then
bin this predicted age value into one of the three pre-defined
groups. Thus, the COTS biographic predictor may include
more discriminative information to train with and thus can
ignore the arbitrary boundaries which may actually impede
good prediction performance.

In summary, the following are the findings of the paper:
1) Label propagation is a viable method for imputing

missing data in gallery records.
2) Suitably weighting individual attributes during label

propagation stage is important.
We reiterate that the purpose of this work was to highlight the
benefits of utilizing a graph-structure to model gallery records
and not to improve state-of-the-art accuracy for biographic
prediction.

VII. SUMMARY

The primary purpose of this article is to motivate the use
of graph-like structures to model the relationship between
gallery records in a biometric database. Here, each gallery
record is populated with both biometric (face) and biographic
data (name, age-group, gender, ethnicity). While such a graph
structure is likely to have several benefits, one specific benefit
was explored in this work – the ability to impute missing
biographic labels by exploiting both intra-record and inter-
record information as characterized by the graph. As im-
provements to the label propagation algorithm is not the goal
of our work, we adopted a label propagation scheme as-is
from the literature to facilitate the prediction of missing data.
The label propagation approach was observed to have success
in this task as it was able to outperform a traditional face-
image-based biographic predictor. This suggests the potential
of the graph structure for use in identity-related tasks (bio-
graphic prediction, identity clustering, rapid recognition, etc.).
In the future, we will develop sophisticated fusion methods
to combine the label propagation scheme with a traditional
face-image-based biographic predictor. This could improve the
overall biographic prediction accuracy.
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